D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
opt
/
alt
/
postgresql11
/
usr
/
share
/
doc
/
alt-postgresql11-9.2.24
/
html
/
Filename :
geqo-intro2.html
back
Copy
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML ><HEAD ><TITLE >Genetic Algorithms</TITLE ><META NAME="GENERATOR" CONTENT="Modular DocBook HTML Stylesheet Version 1.79"><LINK REV="MADE" HREF="mailto:pgsql-docs@postgresql.org"><LINK REL="HOME" TITLE="PostgreSQL 9.2.24 Documentation" HREF="index.html"><LINK REL="UP" TITLE="Genetic Query Optimizer" HREF="geqo.html"><LINK REL="PREVIOUS" TITLE="Query Handling as a Complex Optimization Problem" HREF="geqo-intro.html"><LINK REL="NEXT" TITLE="Genetic Query Optimization (GEQO) in PostgreSQL" HREF="geqo-pg-intro.html"><LINK REL="STYLESHEET" TYPE="text/css" HREF="stylesheet.css"><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1"><META NAME="creation" CONTENT="2017-11-06T22:43:11"></HEAD ><BODY CLASS="SECT1" ><DIV CLASS="NAVHEADER" ><TABLE SUMMARY="Header navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TH COLSPAN="5" ALIGN="center" VALIGN="bottom" ><A HREF="index.html" >PostgreSQL 9.2.24 Documentation</A ></TH ></TR ><TR ><TD WIDTH="10%" ALIGN="left" VALIGN="top" ><A TITLE="Query Handling as a Complex Optimization Problem" HREF="geqo-intro.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="10%" ALIGN="left" VALIGN="top" ><A HREF="geqo.html" ACCESSKEY="U" >Up</A ></TD ><TD WIDTH="60%" ALIGN="center" VALIGN="bottom" >Chapter 51. Genetic Query Optimizer</TD ><TD WIDTH="20%" ALIGN="right" VALIGN="top" ><A TITLE="Genetic Query Optimization (GEQO) in PostgreSQL" HREF="geqo-pg-intro.html" ACCESSKEY="N" >Next</A ></TD ></TR ></TABLE ><HR ALIGN="LEFT" WIDTH="100%"></DIV ><DIV CLASS="SECT1" ><H1 CLASS="SECT1" ><A NAME="GEQO-INTRO2" >51.2. Genetic Algorithms</A ></H1 ><P > The genetic algorithm (<ACRONYM CLASS="ACRONYM" >GA</ACRONYM >) is a heuristic optimization method which operates through randomized search. The set of possible solutions for the optimization problem is considered as a <I CLASS="FIRSTTERM" >population</I > of <I CLASS="FIRSTTERM" >individuals</I >. The degree of adaptation of an individual to its environment is specified by its <I CLASS="FIRSTTERM" >fitness</I >. </P ><P > The coordinates of an individual in the search space are represented by <I CLASS="FIRSTTERM" >chromosomes</I >, in essence a set of character strings. A <I CLASS="FIRSTTERM" >gene</I > is a subsection of a chromosome which encodes the value of a single parameter being optimized. Typical encodings for a gene could be <I CLASS="FIRSTTERM" >binary</I > or <I CLASS="FIRSTTERM" >integer</I >. </P ><P > Through simulation of the evolutionary operations <I CLASS="FIRSTTERM" >recombination</I >, <I CLASS="FIRSTTERM" >mutation</I >, and <I CLASS="FIRSTTERM" >selection</I > new generations of search points are found that show a higher average fitness than their ancestors. </P ><P > According to the <SPAN CLASS="SYSTEMITEM" >comp.ai.genetic</SPAN > <ACRONYM CLASS="ACRONYM" >FAQ</ACRONYM > it cannot be stressed too strongly that a <ACRONYM CLASS="ACRONYM" >GA</ACRONYM > is not a pure random search for a solution to a problem. A <ACRONYM CLASS="ACRONYM" >GA</ACRONYM > uses stochastic processes, but the result is distinctly non-random (better than random). </P ><DIV CLASS="FIGURE" ><A NAME="GEQO-DIAGRAM" ></A ><P ><B >Figure 51-1. Structured Diagram of a Genetic Algorithm</B ></P ><DIV CLASS="INFORMALTABLE" ><P ></P ><A NAME="AEN98333" ></A ><TABLE BORDER="0" FRAME="void" CLASS="CALSTABLE" ><COL><COL><TBODY ><TR ><TD >P(t)</TD ><TD >generation of ancestors at a time t</TD ></TR ><TR ><TD >P''(t)</TD ><TD >generation of descendants at a time t</TD ></TR ></TBODY ></TABLE ><P ></P ></DIV ><PRE CLASS="LITERALLAYOUT" >+=========================================+ |>>>>>>>>>>> Algorithm GA <<<<<<<<<<<<<<| +=========================================+ | INITIALIZE t := 0 | +=========================================+ | INITIALIZE P(t) | +=========================================+ | evaluate FITNESS of P(t) | +=========================================+ | while not STOPPING CRITERION do | | +-------------------------------------+ | | P'(t) := RECOMBINATION{P(t)} | | +-------------------------------------+ | | P''(t) := MUTATION{P'(t)} | | +-------------------------------------+ | | P(t+1) := SELECTION{P''(t) + P(t)} | | +-------------------------------------+ | | evaluate FITNESS of P''(t) | | +-------------------------------------+ | | t := t + 1 | +===+=====================================+</PRE ></DIV ></DIV ><DIV CLASS="NAVFOOTER" ><HR ALIGN="LEFT" WIDTH="100%"><TABLE SUMMARY="Footer navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" ><A HREF="geqo-intro.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="index.html" ACCESSKEY="H" >Home</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" ><A HREF="geqo-pg-intro.html" ACCESSKEY="N" >Next</A ></TD ></TR ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" >Query Handling as a Complex Optimization Problem</TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="geqo.html" ACCESSKEY="U" >Up</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" >Genetic Query Optimization (<ACRONYM CLASS="ACRONYM" >GEQO</ACRONYM >) in PostgreSQL</TD ></TR ></TABLE ></DIV ></BODY ></HTML >