D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
opt
/
saltstack
/
salt
/
lib
/
python3.10
/
site-packages
/
salt
/
utils
/
Filename :
data.py
back
Copy
""" Functions for manipulating, inspecting, or otherwise working with data types and data structures. """ import copy import datetime import fnmatch import functools import hashlib import logging import random import re from collections.abc import Mapping, MutableMapping, Sequence import salt.utils.dictupdate import salt.utils.stringutils import salt.utils.yaml from salt.defaults import DEFAULT_TARGET_DELIM from salt.exceptions import SaltException from salt.utils.decorators.jinja import jinja_filter from salt.utils.odict import OrderedDict try: import jmespath except ImportError: jmespath = None ALGORITHMS_ATTR_NAME = "algorithms_guaranteed" log = logging.getLogger(__name__) class CaseInsensitiveDict(MutableMapping): """ Inspired by requests' case-insensitive dict implementation, but works with non-string keys as well. """ def __init__(self, init=None, **kwargs): """ Force internal dict to be ordered to ensure a consistent iteration order, irrespective of case. """ self._data = OrderedDict() self.update(init or {}, **kwargs) def __len__(self): return len(self._data) def __setitem__(self, key, value): # Store the case-sensitive key so it is available for dict iteration self._data[to_lowercase(key)] = (key, value) def __delitem__(self, key): del self._data[to_lowercase(key)] def __getitem__(self, key): return self._data[to_lowercase(key)][1] def __iter__(self): return (item[0] for item in self._data.values()) def __eq__(self, rval): if not isinstance(rval, Mapping): # Comparing to non-mapping type (e.g. int) is always False return False return dict(self.items_lower()) == dict(CaseInsensitiveDict(rval).items_lower()) def __repr__(self): return repr(dict(self.items())) def items_lower(self): """ Returns a generator iterating over keys and values, with the keys all being lowercase. """ return ((key, val[1]) for key, val in self._data.items()) def copy(self): """ Returns a copy of the object """ return CaseInsensitiveDict(self._data.items()) def __change_case(data, attr, preserve_dict_class=False): """ Calls data.attr() if data has an attribute/method called attr. Processes data recursively if data is a Mapping or Sequence. For Mapping, processes both keys and values. """ try: return getattr(data, attr)() except AttributeError: pass data_type = data.__class__ if isinstance(data, Mapping): return (data_type if preserve_dict_class else dict)( ( __change_case(key, attr, preserve_dict_class), __change_case(val, attr, preserve_dict_class), ) for key, val in data.items() ) if isinstance(data, Sequence): return data_type( __change_case(item, attr, preserve_dict_class) for item in data ) return data def to_lowercase(data, preserve_dict_class=False): """ Recursively changes everything in data to lowercase. """ return __change_case(data, "lower", preserve_dict_class) def to_uppercase(data, preserve_dict_class=False): """ Recursively changes everything in data to uppercase. """ return __change_case(data, "upper", preserve_dict_class) @jinja_filter("compare_dicts") def compare_dicts(old=None, new=None): """ Compare before and after results from various salt functions, returning a dict describing the changes that were made. """ ret = {} for key in set(new or {}).union(old or {}): if key not in old: # New key ret[key] = {"old": "", "new": new[key]} elif key not in new: # Key removed ret[key] = {"new": "", "old": old[key]} elif new[key] != old[key]: # Key modified ret[key] = {"old": old[key], "new": new[key]} return ret @jinja_filter("compare_lists") def compare_lists(old=None, new=None): """ Compare before and after results from various salt functions, returning a dict describing the changes that were made """ ret = {} for item in new: if item not in old: ret.setdefault("new", []).append(item) for item in old: if item not in new: ret.setdefault("old", []).append(item) return ret def _remove_circular_refs(ob, _seen=None): """ Generic method to remove circular references from objects. This has been taken from author Martijn Pieters https://stackoverflow.com/questions/44777369/ remove-circular-references-in-dicts-lists-tuples/44777477#44777477 :param ob: dict, list, typle, set, and frozenset Standard python object :param object _seen: Object that has circular reference :returns: Cleaned Python object :rtype: type(ob) """ if _seen is None: _seen = set() if id(ob) in _seen: # Here we caught a circular reference. # Alert user and cleanup to continue. log.exception( "Caught a circular reference in data structure below." "Cleaning and continuing execution.\n%r\n", ob, ) return None _seen.add(id(ob)) res = ob if isinstance(ob, dict): res = { _remove_circular_refs(k, _seen): _remove_circular_refs(v, _seen) for k, v in ob.items() } elif isinstance(ob, (list, tuple, set, frozenset)): res = type(ob)(_remove_circular_refs(v, _seen) for v in ob) # remove id again; only *nested* references count _seen.remove(id(ob)) return res def decode( data, encoding=None, errors="strict", keep=False, normalize=False, preserve_dict_class=False, preserve_tuples=False, to_str=False, ): """ Generic function which will decode whichever type is passed, if necessary. Optionally use to_str=True to ensure strings are str types and not unicode on Python 2. If `strict` is True, and `keep` is False, and we fail to decode, a UnicodeDecodeError will be raised. Passing `keep` as True allows for the original value to silently be returned in cases where decoding fails. This can be useful for cases where the data passed to this function is likely to contain binary blobs, such as in the case of cp.recv. If `normalize` is True, then unicodedata.normalize() will be used to normalize unicode strings down to a single code point per glyph. It is recommended not to normalize unless you know what you're doing. For instance, if `data` contains a dictionary, it is possible that normalizing will lead to data loss because the following two strings will normalize to the same value: - u'\\u044f\\u0438\\u0306\\u0446\\u0430.txt' - u'\\u044f\\u0439\\u0446\\u0430.txt' One good use case for normalization is in the test suite. For example, on some platforms such as Mac OS, os.listdir() will produce the first of the two strings above, in which "ะน" is represented as two code points (i.e. one for the base character, and one for the breve mark). Normalizing allows for a more reliable test case. """ # Clean data object before decoding to avoid circular references data = _remove_circular_refs(data) _decode_func = ( salt.utils.stringutils.to_unicode if not to_str else salt.utils.stringutils.to_str ) if isinstance(data, Mapping): return decode_dict( data, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) if isinstance(data, list): return decode_list( data, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) if isinstance(data, tuple): return ( decode_tuple( data, encoding, errors, keep, normalize, preserve_dict_class, to_str ) if preserve_tuples else decode_list( data, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) ) if isinstance(data, datetime.datetime): return data.isoformat() try: data = _decode_func(data, encoding, errors, normalize) except TypeError: # to_unicode raises a TypeError when input is not a # string/bytestring/bytearray. This is expected and simply means we # are going to leave the value as-is. pass except UnicodeDecodeError: if not keep: raise return data def decode_dict( data, encoding=None, errors="strict", keep=False, normalize=False, preserve_dict_class=False, preserve_tuples=False, to_str=False, ): """ Decode all string values to Unicode. Optionally use to_str=True to ensure strings are str types and not unicode on Python 2. """ # Clean data object before decoding to avoid circular references data = _remove_circular_refs(data) # Make sure we preserve OrderedDicts ret = data.__class__() if preserve_dict_class else {} for key, value in data.items(): if isinstance(key, tuple): key = ( decode_tuple( key, encoding, errors, keep, normalize, preserve_dict_class, to_str ) if preserve_tuples else decode_list( key, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) ) else: try: key = decode( key, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) except TypeError: # to_unicode raises a TypeError when input is not a # string/bytestring/bytearray. This is expected and simply # means we are going to leave the value as-is. pass except UnicodeDecodeError: if not keep: raise if isinstance(value, list): value = decode_list( value, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) elif isinstance(value, tuple): value = ( decode_tuple( value, encoding, errors, keep, normalize, preserve_dict_class, to_str, ) if preserve_tuples else decode_list( value, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) ) elif isinstance(value, Mapping): value = decode_dict( value, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) else: try: value = decode( value, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) except TypeError as e: # to_unicode raises a TypeError when input is not a # string/bytestring/bytearray. This is expected and simply # means we are going to leave the value as-is. pass except UnicodeDecodeError: if not keep: raise ret[key] = value return ret def decode_list( data, encoding=None, errors="strict", keep=False, normalize=False, preserve_dict_class=False, preserve_tuples=False, to_str=False, ): """ Decode all string values to Unicode. Optionally use to_str=True to ensure strings are str types and not unicode on Python 2. """ # Clean data object before decoding to avoid circular references data = _remove_circular_refs(data) ret = [] for item in data: if isinstance(item, list): item = decode_list( item, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) elif isinstance(item, tuple): item = ( decode_tuple( item, encoding, errors, keep, normalize, preserve_dict_class, to_str ) if preserve_tuples else decode_list( item, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) ) elif isinstance(item, Mapping): item = decode_dict( item, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) else: try: item = decode( item, encoding, errors, keep, normalize, preserve_dict_class, preserve_tuples, to_str, ) except TypeError: # to_unicode raises a TypeError when input is not a # string/bytestring/bytearray. This is expected and simply # means we are going to leave the value as-is. pass except UnicodeDecodeError: if not keep: raise ret.append(item) return ret def decode_tuple( data, encoding=None, errors="strict", keep=False, normalize=False, preserve_dict_class=False, to_str=False, ): """ Decode all string values to Unicode. Optionally use to_str=True to ensure strings are str types and not unicode on Python 2. """ return tuple( decode_list( data, encoding, errors, keep, normalize, preserve_dict_class, True, to_str ) ) def encode( data, encoding=None, errors="strict", keep=False, preserve_dict_class=False, preserve_tuples=False, ): """ Generic function which will encode whichever type is passed, if necessary If `strict` is True, and `keep` is False, and we fail to encode, a UnicodeEncodeError will be raised. Passing `keep` as True allows for the original value to silently be returned in cases where encoding fails. This can be useful for cases where the data passed to this function is likely to contain binary blobs. """ # Clean data object before encoding to avoid circular references data = _remove_circular_refs(data) if isinstance(data, Mapping): return encode_dict( data, encoding, errors, keep, preserve_dict_class, preserve_tuples ) if isinstance(data, list): return encode_list( data, encoding, errors, keep, preserve_dict_class, preserve_tuples ) if isinstance(data, tuple): return ( encode_tuple(data, encoding, errors, keep, preserve_dict_class) if preserve_tuples else encode_list( data, encoding, errors, keep, preserve_dict_class, preserve_tuples ) ) try: return salt.utils.stringutils.to_bytes(data, encoding, errors) except TypeError: # to_bytes raises a TypeError when input is not a # string/bytestring/bytearray. This is expected and simply # means we are going to leave the value as-is. pass except UnicodeEncodeError: if not keep: raise return data @jinja_filter("json_decode_dict") # Remove this for Aluminium @jinja_filter("json_encode_dict") def encode_dict( data, encoding=None, errors="strict", keep=False, preserve_dict_class=False, preserve_tuples=False, ): """ Encode all string values to bytes """ # Clean data object before encoding to avoid circular references data = _remove_circular_refs(data) ret = data.__class__() if preserve_dict_class else {} for key, value in data.items(): if isinstance(key, tuple): key = ( encode_tuple(key, encoding, errors, keep, preserve_dict_class) if preserve_tuples else encode_list( key, encoding, errors, keep, preserve_dict_class, preserve_tuples ) ) else: try: key = salt.utils.stringutils.to_bytes(key, encoding, errors) except TypeError: # to_bytes raises a TypeError when input is not a # string/bytestring/bytearray. This is expected and simply # means we are going to leave the value as-is. pass except UnicodeEncodeError: if not keep: raise if isinstance(value, list): value = encode_list( value, encoding, errors, keep, preserve_dict_class, preserve_tuples ) elif isinstance(value, tuple): value = ( encode_tuple(value, encoding, errors, keep, preserve_dict_class) if preserve_tuples else encode_list( value, encoding, errors, keep, preserve_dict_class, preserve_tuples ) ) elif isinstance(value, Mapping): value = encode_dict( value, encoding, errors, keep, preserve_dict_class, preserve_tuples ) else: try: value = salt.utils.stringutils.to_bytes(value, encoding, errors) except TypeError: # to_bytes raises a TypeError when input is not a # string/bytestring/bytearray. This is expected and simply # means we are going to leave the value as-is. pass except UnicodeEncodeError: if not keep: raise ret[key] = value return ret @jinja_filter("json_decode_list") # Remove this for Aluminium @jinja_filter("json_encode_list") def encode_list( data, encoding=None, errors="strict", keep=False, preserve_dict_class=False, preserve_tuples=False, ): """ Encode all string values to bytes """ # Clean data object before encoding to avoid circular references data = _remove_circular_refs(data) ret = [] for item in data: if isinstance(item, list): item = encode_list( item, encoding, errors, keep, preserve_dict_class, preserve_tuples ) elif isinstance(item, tuple): item = ( encode_tuple(item, encoding, errors, keep, preserve_dict_class) if preserve_tuples else encode_list( item, encoding, errors, keep, preserve_dict_class, preserve_tuples ) ) elif isinstance(item, Mapping): item = encode_dict( item, encoding, errors, keep, preserve_dict_class, preserve_tuples ) else: try: item = salt.utils.stringutils.to_bytes(item, encoding, errors) except TypeError: # to_bytes raises a TypeError when input is not a # string/bytestring/bytearray. This is expected and simply # means we are going to leave the value as-is. pass except UnicodeEncodeError: if not keep: raise ret.append(item) return ret def encode_tuple( data, encoding=None, errors="strict", keep=False, preserve_dict_class=False ): """ Encode all string values to Unicode """ return tuple(encode_list(data, encoding, errors, keep, preserve_dict_class, True)) @jinja_filter("exactly_n_true") def exactly_n(iterable, amount=1): """ Tests that exactly N items in an iterable are "truthy" (neither None, False, nor 0). """ i = iter(iterable) return all(any(i) for j in range(amount)) and not any(i) @jinja_filter("exactly_one_true") def exactly_one(iterable): """ Check if only one item is not None, False, or 0 in an iterable. """ return exactly_n(iterable) def filter_by(lookup_dict, lookup, traverse, merge=None, default="default", base=None): """ Common code to filter data structures like grains and pillar """ ret = None # Default value would be an empty list if lookup not found val = traverse_dict_and_list(traverse, lookup, []) # Iterate over the list of values to match against patterns in the # lookup_dict keys for each in val if isinstance(val, list) else [val]: for key in lookup_dict: test_key = key if isinstance(key, str) else str(key) test_each = each if isinstance(each, str) else str(each) if fnmatch.fnmatchcase(test_each, test_key): ret = lookup_dict[key] break if ret is not None: break if ret is None: ret = lookup_dict.get(default, None) if base and base in lookup_dict: base_values = lookup_dict[base] if ret is None: ret = base_values elif isinstance(base_values, Mapping): if not isinstance(ret, Mapping): raise SaltException( "filter_by default and look-up values must both be dictionaries." ) ret = salt.utils.dictupdate.update(copy.deepcopy(base_values), ret) if merge: if not isinstance(merge, Mapping): raise SaltException("filter_by merge argument must be a dictionary.") if ret is None: ret = merge else: salt.utils.dictupdate.update(ret, copy.deepcopy(merge)) return ret def traverse_dict(data, key, default=None, delimiter=DEFAULT_TARGET_DELIM): """ Traverse a dict using a colon-delimited (or otherwise delimited, using the 'delimiter' param) target string. The target 'foo:bar:baz' will return data['foo']['bar']['baz'] if this value exists, and will otherwise return the dict in the default argument. """ ptr = data try: for each in key.split(delimiter): ptr = ptr[each] except (KeyError, IndexError, TypeError): # Encountered a non-indexable value in the middle of traversing return default return ptr @jinja_filter("traverse") def traverse_dict_and_list(data, key, default=None, delimiter=DEFAULT_TARGET_DELIM): """ Traverse a dict or list using a colon-delimited (or otherwise delimited, using the 'delimiter' param) target string. The target 'foo:bar:0' will return data['foo']['bar'][0] if this value exists, and will otherwise return the dict in the default argument. Function will automatically determine the target type. The target 'foo:bar:0' will return data['foo']['bar'][0] if data like {'foo':{'bar':['baz']}} , if data like {'foo':{'bar':{'0':'baz'}}} then return data['foo']['bar']['0'] """ ptr = data if isinstance(key, str): key = key.split(delimiter) if isinstance(key, int): key = [key] for each in key: if isinstance(ptr, list): try: idx = int(each) except ValueError: embed_match = False # Index was not numeric, lets look at any embedded dicts for embedded in (x for x in ptr if isinstance(x, dict)): try: ptr = embedded[each] embed_match = True break except KeyError: pass if not embed_match: # No embedded dicts matched, return the default return default else: embed_match = False # Index was numeric, lets look at any embedded dicts # using the converted version of each. for embedded in (x for x in ptr if isinstance(x, dict)): try: ptr = embedded[idx] embed_match = True break except KeyError: pass if not embed_match: try: ptr = ptr[idx] except IndexError: return default else: try: ptr = ptr[each] except KeyError: # Late import to avoid circular import import salt.utils.args # YAML-load the current key (catches integer/float dict keys) try: loaded_key = salt.utils.args.yamlify_arg(each) except Exception: # pylint: disable=broad-except return default if loaded_key == each: # After YAML-loading, the desired key is unchanged. This # means that the KeyError caught above is a legitimate # failure to match the desired key. Therefore, return the # default. return default else: # YAML-loading the key changed its value, so re-check with # the loaded key. This is how we can match a numeric key # with a string-based expression. try: ptr = ptr[loaded_key] except (KeyError, TypeError): return default except TypeError: return default return ptr def subdict_match( data, expr, delimiter=DEFAULT_TARGET_DELIM, regex_match=False, exact_match=False ): """ Check for a match in a dictionary using a delimiter character to denote levels of subdicts, and also allowing the delimiter character to be matched. Thus, 'foo:bar:baz' will match data['foo'] == 'bar:baz' and data['foo']['bar'] == 'baz'. The latter would take priority over the former, as more deeply-nested matches are tried first. """ def _match(target, pattern, regex_match=False, exact_match=False): # XXX: A lot of this logic is here because of supporting PY2 and PY3, # now that we only support PY3 we should probably re-visit what's going # on here. try: target = str(target).lower() except UnicodeDecodeError: target = salt.utils.stringutils.to_unicode(target).lower() try: pattern = str(pattern).lower() except UnicodeDecodeError: pattern = salt.utils.stringutils.to_unicode(pattern).lower() if regex_match: try: return re.match(pattern, target) except Exception: # pylint: disable=broad-except log.error("Invalid regex '%s' in match", pattern) return False else: return ( target == pattern if exact_match else fnmatch.fnmatch(target, pattern) ) def _dict_match(target, pattern, regex_match=False, exact_match=False): ret = False wildcard = pattern.startswith("*:") if wildcard: pattern = pattern[2:] if pattern == "*": # We are just checking that the key exists ret = True if not ret and pattern in target: # We might want to search for a key ret = True if not ret and subdict_match( target, pattern, regex_match=regex_match, exact_match=exact_match ): ret = True if not ret and wildcard: for key in target: if isinstance(target[key], dict): if _dict_match( target[key], pattern, regex_match=regex_match, exact_match=exact_match, ): return True elif isinstance(target[key], list): for item in target[key]: if _match( item, pattern, regex_match=regex_match, exact_match=exact_match, ): return True elif _match( target[key], pattern, regex_match=regex_match, exact_match=exact_match, ): return True return ret splits = expr.split(delimiter) num_splits = len(splits) if num_splits == 1: # Delimiter not present, this can't possibly be a match return False # If we have 4 splits, then we have three delimiters. Thus, the indexes we # want to use are 3, 2, and 1, in that order. for idx in range(num_splits - 1, 0, -1): key = delimiter.join(splits[:idx]) if key == "*": # We are matching on everything under the top level, so we need to # treat the match as the entire data being passed in matchstr = expr match = data else: matchstr = delimiter.join(splits[idx:]) match = traverse_dict_and_list(data, key, {}, delimiter=delimiter) log.debug( "Attempting to match '%s' in '%s' using delimiter '%s'", matchstr, key, delimiter, ) if match == {}: continue if isinstance(match, dict): if _dict_match( match, matchstr, regex_match=regex_match, exact_match=exact_match ): return True continue if isinstance(match, (list, tuple)): # We are matching a single component to a single list member for member in match: if isinstance(member, dict): if _dict_match( member, matchstr, regex_match=regex_match, exact_match=exact_match, ): return True if _match( member, matchstr, regex_match=regex_match, exact_match=exact_match ): return True continue if _match(match, matchstr, regex_match=regex_match, exact_match=exact_match): return True return False @jinja_filter("substring_in_list") def substr_in_list(string_to_search_for, list_to_search): """ Return a boolean value that indicates whether or not a given string is present in any of the strings which comprise a list """ return any(string_to_search_for in s for s in list_to_search) def is_dictlist(data): """ Returns True if data is a list of one-element dicts (as found in many SLS schemas), otherwise returns False """ if isinstance(data, list): for element in data: if isinstance(element, dict): if len(element) != 1: return False else: return False return True return False def repack_dictlist(data, strict=False, recurse=False, key_cb=None, val_cb=None): """ Takes a list of one-element dicts (as found in many SLS schemas) and repacks into a single dictionary. """ if isinstance(data, str): try: data = salt.utils.yaml.safe_load(data) except salt.utils.yaml.parser.ParserError as err: log.error(err) return {} if key_cb is None: key_cb = lambda x: x if val_cb is None: val_cb = lambda x, y: y valid_non_dict = ((str,), (int,), float) if isinstance(data, list): for element in data: if isinstance(element, valid_non_dict): continue if isinstance(element, dict): if len(element) != 1: log.error( "Invalid input for repack_dictlist: key/value pairs " "must contain only one element (data passed: %s).", element, ) return {} else: log.error( "Invalid input for repack_dictlist: element %s is " "not a string/dict/numeric value", element, ) return {} else: log.error( "Invalid input for repack_dictlist, data passed is not a list (%s)", data ) return {} ret = {} for element in data: if isinstance(element, valid_non_dict): ret[key_cb(element)] = None else: key = next(iter(element)) val = element[key] if is_dictlist(val): if recurse: ret[key_cb(key)] = repack_dictlist(val, recurse=recurse) elif strict: log.error( "Invalid input for repack_dictlist: nested dictlist " "found, but recurse is set to False" ) return {} else: ret[key_cb(key)] = val_cb(key, val) else: ret[key_cb(key)] = val_cb(key, val) return ret @jinja_filter("is_list") def is_list(value): """ Check if a variable is a list. """ return isinstance(value, list) @jinja_filter("is_iter") def is_iter(thing, ignore=(str,)): """ Test if an object is iterable, but not a string type. Test if an object is an iterator or is iterable itself. By default this does not return True for string objects. The `ignore` argument defaults to a list of string types that are not considered iterable. This can be used to also exclude things like dictionaries or named tuples. Based on https://bitbucket.org/petershinners/yter """ if ignore and isinstance(thing, ignore): return False try: iter(thing) return True except TypeError: return False @jinja_filter("sorted_ignorecase") def sorted_ignorecase(to_sort): """ Sort a list of strings ignoring case. >>> L = ['foo', 'Foo', 'bar', 'Bar'] >>> sorted(L) ['Bar', 'Foo', 'bar', 'foo'] >>> sorted(L, key=lambda x: x.lower()) ['bar', 'Bar', 'foo', 'Foo'] >>> """ return sorted(to_sort, key=lambda x: x.lower()) def is_true(value=None): """ Returns a boolean value representing the "truth" of the value passed. The rules for what is a "True" value are: 1. Integer/float values greater than 0 2. The string values "True" and "true" 3. Any object for which bool(obj) returns True """ # First, try int/float conversion try: value = int(value) except (ValueError, TypeError): pass try: value = float(value) except (ValueError, TypeError): pass # Now check for truthiness if isinstance(value, ((int,), float)): return value > 0 if isinstance(value, str): return str(value).lower() == "true" return bool(value) @jinja_filter("mysql_to_dict") def mysql_to_dict(data, key): """ Convert MySQL-style output to a python dictionary """ ret = {} headers = [""] for line in data: if not line: continue if line.startswith("+"): continue comps = line.split("|") for idx, comp in enumerate(comps): comps[idx] = comp.strip() if len(headers) > 1: index = len(headers) - 1 row = {} for field in range(index): if field < 1: continue row[headers[field]] = salt.utils.stringutils.to_num(comps[field]) ret[row[key]] = row else: headers = comps return ret def simple_types_filter(data): """ Convert the data list, dictionary into simple types, i.e., int, float, string, bool, etc. """ if data is None: return data simpletypes_keys = ((str,), str, (int,), float, bool) simpletypes_values = tuple(list(simpletypes_keys) + [list, tuple]) if isinstance(data, (list, tuple)): simplearray = [] for value in data: if value is not None: if isinstance(value, (dict, list)): value = simple_types_filter(value) elif not isinstance(value, simpletypes_values): value = repr(value) simplearray.append(value) return simplearray if isinstance(data, dict): simpledict = {} for key, value in data.items(): if key is not None and not isinstance(key, simpletypes_keys): key = repr(key) if value is not None and isinstance(value, (dict, list, tuple)): value = simple_types_filter(value) elif value is not None and not isinstance(value, simpletypes_values): value = repr(value) simpledict[key] = value return simpledict return data def stringify(data): """ Given an iterable, returns its items as a list, with any non-string items converted to unicode strings. """ ret = [] for item in data: if not isinstance(item, str): item = str(item) ret.append(item) return ret @jinja_filter("json_query") def json_query(data, expr): """ Query data using JMESPath language (http://jmespath.org). Requires the https://github.com/jmespath/jmespath.py library. :param data: A complex data structure to query :param expr: A JMESPath expression (query) :returns: The query result .. code-block:: jinja {"services": [ {"name": "http", "host": "1.2.3.4", "port": 80}, {"name": "smtp", "host": "1.2.3.5", "port": 25}, {"name": "ssh", "host": "1.2.3.6", "port": 22}, ]} | json_query("services[].port") }} will be rendered as: .. code-block:: text [80, 25, 22] """ if jmespath is None: err = "json_query requires jmespath module installed" log.error(err) raise RuntimeError(err) return jmespath.search(expr, data) def _is_not_considered_falsey(value, ignore_types=()): """ Helper function for filter_falsey to determine if something is not to be considered falsey. :param any value: The value to consider :param list ignore_types: The types to ignore when considering the value. :return bool """ return isinstance(value, bool) or type(value) in ignore_types or value def filter_falsey(data, recurse_depth=None, ignore_types=()): """ Helper function to remove items from an iterable with falsey value. Removes ``None``, ``{}`` and ``[]``, 0, '' (but does not remove ``False``). Recurses into sub-iterables if ``recurse`` is set to ``True``. :param dict/list data: Source iterable (dict, OrderedDict, list, set, ...) to process. :param int recurse_depth: Recurse this many levels into values that are dicts or lists to also process those. Default: 0 (do not recurse) :param list ignore_types: Contains types that can be falsey but must not be filtered. Default: Only booleans are not filtered. :return type(data) .. versionadded:: 3000 """ filter_element = ( functools.partial( filter_falsey, recurse_depth=recurse_depth - 1, ignore_types=ignore_types ) if recurse_depth else lambda x: x ) if isinstance(data, dict): processed_elements = [ (key, filter_element(value)) for key, value in data.items() ] return type(data)( [ (key, value) for key, value in processed_elements if _is_not_considered_falsey(value, ignore_types=ignore_types) ] ) if is_iter(data): processed_elements = (filter_element(value) for value in data) return type(data)( [ value for value in processed_elements if _is_not_considered_falsey(value, ignore_types=ignore_types) ] ) return data def recursive_diff( old, new, ignore_keys=None, ignore_order=False, ignore_missing_keys=False ): """ Performs a recursive diff on mappings and/or iterables and returns the result in a {'old': values, 'new': values}-style. Compares dicts and sets unordered (obviously), OrderedDicts and Lists ordered (but only if both ``old`` and ``new`` are of the same type), all other Mapping types unordered, and all other iterables ordered. :param mapping/iterable old: Mapping or Iterable to compare from. :param mapping/iterable new: Mapping or Iterable to compare to. :param list ignore_keys: List of keys to ignore when comparing Mappings. :param bool ignore_order: Compare ordered mapping/iterables as if they were unordered. :param bool ignore_missing_keys: Do not return keys only present in ``old`` but missing in ``new``. Only works for regular dicts. :return dict: Returns dict with keys 'old' and 'new' containing the differences. """ ignore_keys = ignore_keys or [] res = {} ret_old = copy.deepcopy(old) ret_new = copy.deepcopy(new) if ( isinstance(old, OrderedDict) and isinstance(new, OrderedDict) and not ignore_order ): append_old, append_new = [], [] if len(old) != len(new): min_length = min(len(old), len(new)) # The list coercion is required for Py3 append_old = list(old.keys())[min_length:] append_new = list(new.keys())[min_length:] # Compare ordered for (key_old, key_new) in zip(old, new): if key_old == key_new: if key_old in ignore_keys: del ret_old[key_old] del ret_new[key_new] else: res = recursive_diff( old[key_old], new[key_new], ignore_keys=ignore_keys, ignore_order=ignore_order, ignore_missing_keys=ignore_missing_keys, ) if not res: # Equal del ret_old[key_old] del ret_new[key_new] else: ret_old[key_old] = res["old"] ret_new[key_new] = res["new"] else: if key_old in ignore_keys: del ret_old[key_old] if key_new in ignore_keys: del ret_new[key_new] # If the OrderedDicts were of inequal length, add the remaining key/values. for item in append_old: ret_old[item] = old[item] for item in append_new: ret_new[item] = new[item] ret = {"old": ret_old, "new": ret_new} if ret_old or ret_new else {} elif isinstance(old, Mapping) and isinstance(new, Mapping): # Compare unordered for key in set(list(old) + list(new)): if key in ignore_keys: ret_old.pop(key, None) ret_new.pop(key, None) elif ignore_missing_keys and key in old and key not in new: del ret_old[key] elif key in old and key in new: res = recursive_diff( old[key], new[key], ignore_keys=ignore_keys, ignore_order=ignore_order, ignore_missing_keys=ignore_missing_keys, ) if not res: # Equal del ret_old[key] del ret_new[key] else: ret_old[key] = res["old"] ret_new[key] = res["new"] ret = {"old": ret_old, "new": ret_new} if ret_old or ret_new else {} elif isinstance(old, set) and isinstance(new, set): ret = {"old": old - new, "new": new - old} if old - new or new - old else {} elif is_iter(old) and is_iter(new): # Create a list so we can edit on an index-basis. list_old = list(ret_old) list_new = list(ret_new) if ignore_order: for item_old in old: for item_new in new: res = recursive_diff( item_old, item_new, ignore_keys=ignore_keys, ignore_order=ignore_order, ignore_missing_keys=ignore_missing_keys, ) if not res: list_old.remove(item_old) list_new.remove(item_new) continue else: remove_indices = [] for index, (iter_old, iter_new) in enumerate(zip(old, new)): res = recursive_diff( iter_old, iter_new, ignore_keys=ignore_keys, ignore_order=ignore_order, ignore_missing_keys=ignore_missing_keys, ) if not res: # Equal remove_indices.append(index) else: list_old[index] = res["old"] list_new[index] = res["new"] for index in reversed(remove_indices): list_old.pop(index) list_new.pop(index) # Instantiate a new whatever-it-was using the list as iterable source. # This may not be the most optimized in way of speed and memory usage, # but it will work for all iterable types. ret = ( {"old": type(old)(list_old), "new": type(new)(list_new)} if list_old or list_new else {} ) else: ret = {} if old == new else {"old": ret_old, "new": ret_new} return ret def get_value(obj, path, default=None): """ Get the values for a given path. :param path: keys of the properties in the tree separated by colons. One segment in the path can be replaced by an id surrounded by curly braces. This will match all items in a list of dictionary. :param default: default value to return when no value is found :return: a list of dictionaries, with at least the "value" key providing the actual value. If a placeholder was used, the placeholder id will be a key providing the replacement for it. Note that a value that wasn't found in the tree will be an empty list. This ensures we can make the difference with a None value set by the user. """ res = [{"value": obj}] if path: key = path[: path.find(":")] if ":" in path else path next_path = path[path.find(":") + 1 :] if ":" in path else None if key.startswith("{") and key.endswith("}"): placeholder_name = key[1:-1] # There will be multiple values to get here items = [] if obj is None: return res if isinstance(obj, dict): items = obj.items() elif isinstance(obj, list): items = enumerate(obj) def _append_placeholder(value_dict, key): value_dict[placeholder_name] = key return value_dict values = [ [ _append_placeholder(item, key) for item in get_value(val, next_path, default) ] for key, val in items ] # flatten the list values = [y for x in values for y in x] return values elif isinstance(obj, dict): if key not in obj.keys(): return [{"value": default}] value = obj.get(key) if res is not None: res = get_value(value, next_path, default) else: res = [{"value": value}] else: return [{"value": default if obj is not None else obj}] return res @jinja_filter("flatten") def flatten(data, levels=None, preserve_nulls=False, _ids=None): """ .. versionadded:: 3005 Flatten a list. :param data: A list to flatten :param levels: The number of levels in sub-lists to descend :param preserve_nulls: Preserve nulls in a list, by default flatten removes them :param _ids: Parameter used internally within the function to detect reference cycles. :returns: A flat(ter) list of values .. code-block:: jinja {{ [3, [4, 2] ] | flatten }} # => [3, 4, 2] Flatten only the first level of a list: .. code-block:: jinja {{ [3, [4, [2]] ] | flatten(levels=1) }} # => [3, 4, [2]] Preserve nulls in a list, by default flatten removes them. .. code-block:: jinja {{ [3, None, [4, [2]] ] | flatten(levels=1, preserve_nulls=True) }} # => [3, None, 4, [2]] """ if _ids is None: _ids = set() if id(data) in _ids: raise RecursionError("Reference cycle detected. Check input list.") _ids.add(id(data)) ret = [] for element in data: if not preserve_nulls and element in (None, "None", "null"): # ignore null items continue elif is_iter(element): if levels is None: ret.extend(flatten(element, preserve_nulls=preserve_nulls, _ids=_ids)) elif levels >= 1: # decrement as we go down the stack ret.extend( flatten( element, levels=(int(levels) - 1), preserve_nulls=preserve_nulls, _ids=_ids, ) ) else: ret.append(element) else: ret.append(element) return ret def hash(value, algorithm="sha512"): """ .. versionadded:: 2014.7.0 Encodes a value with the specified encoder. value The value to be hashed. algorithm : sha512 The algorithm to use. May be any valid algorithm supported by hashlib. """ if isinstance(value, str): # Under Python 3 we must work with bytes value = value.encode(__salt_system_encoding__) if hasattr(hashlib, ALGORITHMS_ATTR_NAME) and algorithm in getattr( hashlib, ALGORITHMS_ATTR_NAME ): hasher = hashlib.new(algorithm) hasher.update(value) out = hasher.hexdigest() elif hasattr(hashlib, algorithm): hasher = hashlib.new(algorithm) hasher.update(value) out = hasher.hexdigest() else: raise SaltException("You must specify a valid algorithm.") return out @jinja_filter("random_sample") def sample(value, size, seed=None): """ Return a given sample size from a list. By default, the random number generator uses the current system time unless given a seed value. .. versionadded:: 3005 value A list to e used as input. size The sample size to return. seed Any value which will be hashed as a seed for random. """ if seed is None: ret = random.sample(value, size) else: ret = random.Random(hash(seed)).sample(value, size) return ret @jinja_filter("random_shuffle") def shuffle(value, seed=None): """ Return a shuffled copy of an input list. By default, the random number generator uses the current system time unless given a seed value. .. versionadded:: 3005 value A list to be used as input. seed Any value which will be hashed as a seed for random. """ return sample(value, len(value), seed=seed)