D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
opt
/
td-agent
/
embedded
/
lib
/
ruby
/
2.1.0
/
minitest
/
Filename :
benchmark.rb
back
Copy
# encoding: utf-8 ###################################################################### # This file is imported from the minitest project. # DO NOT make modifications in this repo. They _will_ be reverted! # File a patch instead and assign it to Ryan Davis. ###################################################################### require 'minitest/unit' require 'minitest/spec' class MiniTest::Unit # :nodoc: def run_benchmarks # :nodoc: _run_anything :benchmark end def benchmark_suite_header suite # :nodoc: "\n#{suite}\t#{suite.bench_range.join("\t")}" end class TestCase ## # Returns a set of ranges stepped exponentially from +min+ to # +max+ by powers of +base+. Eg: # # bench_exp(2, 16, 2) # => [2, 4, 8, 16] def self.bench_exp min, max, base = 10 min = (Math.log10(min) / Math.log10(base)).to_i max = (Math.log10(max) / Math.log10(base)).to_i (min..max).map { |m| base ** m }.to_a end ## # Returns a set of ranges stepped linearly from +min+ to +max+ by # +step+. Eg: # # bench_linear(20, 40, 10) # => [20, 30, 40] def self.bench_linear min, max, step = 10 (min..max).step(step).to_a rescue LocalJumpError # 1.8.6 r = []; (min..max).step(step) { |n| r << n }; r end ## # Returns the benchmark methods (methods that start with bench_) # for that class. def self.benchmark_methods # :nodoc: public_instance_methods(true).grep(/^bench_/).map { |m| m.to_s }.sort end ## # Returns all test suites that have benchmark methods. def self.benchmark_suites TestCase.test_suites.reject { |s| s.benchmark_methods.empty? } end ## # Specifies the ranges used for benchmarking for that class. # Defaults to exponential growth from 1 to 10k by powers of 10. # Override if you need different ranges for your benchmarks. # # See also: ::bench_exp and ::bench_linear. def self.bench_range bench_exp 1, 10_000 end ## # Runs the given +work+, gathering the times of each run. Range # and times are then passed to a given +validation+ proc. Outputs # the benchmark name and times in tab-separated format, making it # easy to paste into a spreadsheet for graphing or further # analysis. # # Ranges are specified by ::bench_range. # # Eg: # # def bench_algorithm # validation = proc { |x, y| ... } # assert_performance validation do |n| # @obj.algorithm(n) # end # end def assert_performance validation, &work range = self.class.bench_range io.print "#{__name__}" times = [] range.each do |x| GC.start t0 = Time.now instance_exec(x, &work) t = Time.now - t0 io.print "\t%9.6f" % t times << t end io.puts validation[range, times] end ## # Runs the given +work+ and asserts that the times gathered fit to # match a constant rate (eg, linear slope == 0) within a given # +threshold+. Note: because we're testing for a slope of 0, R^2 # is not a good determining factor for the fit, so the threshold # is applied against the slope itself. As such, you probably want # to tighten it from the default. # # See http://www.graphpad.com/curvefit/goodness_of_fit.htm for # more details. # # Fit is calculated by #fit_linear. # # Ranges are specified by ::bench_range. # # Eg: # # def bench_algorithm # assert_performance_constant 0.9999 do |n| # @obj.algorithm(n) # end # end def assert_performance_constant threshold = 0.99, &work validation = proc do |range, times| a, b, rr = fit_linear range, times assert_in_delta 0, b, 1 - threshold [a, b, rr] end assert_performance validation, &work end ## # Runs the given +work+ and asserts that the times gathered fit to # match a exponential curve within a given error +threshold+. # # Fit is calculated by #fit_exponential. # # Ranges are specified by ::bench_range. # # Eg: # # def bench_algorithm # assert_performance_exponential 0.9999 do |n| # @obj.algorithm(n) # end # end def assert_performance_exponential threshold = 0.99, &work assert_performance validation_for_fit(:exponential, threshold), &work end ## # Runs the given +work+ and asserts that the times gathered fit to # match a logarithmic curve within a given error +threshold+. # # Fit is calculated by #fit_logarithmic. # # Ranges are specified by ::bench_range. # # Eg: # # def bench_algorithm # assert_performance_logarithmic 0.9999 do |n| # @obj.algorithm(n) # end # end def assert_performance_logarithmic threshold = 0.99, &work assert_performance validation_for_fit(:logarithmic, threshold), &work end ## # Runs the given +work+ and asserts that the times gathered fit to # match a straight line within a given error +threshold+. # # Fit is calculated by #fit_linear. # # Ranges are specified by ::bench_range. # # Eg: # # def bench_algorithm # assert_performance_linear 0.9999 do |n| # @obj.algorithm(n) # end # end def assert_performance_linear threshold = 0.99, &work assert_performance validation_for_fit(:linear, threshold), &work end ## # Runs the given +work+ and asserts that the times gathered curve # fit to match a power curve within a given error +threshold+. # # Fit is calculated by #fit_power. # # Ranges are specified by ::bench_range. # # Eg: # # def bench_algorithm # assert_performance_power 0.9999 do |x| # @obj.algorithm # end # end def assert_performance_power threshold = 0.99, &work assert_performance validation_for_fit(:power, threshold), &work end ## # Takes an array of x/y pairs and calculates the general R^2 value. # # See: http://en.wikipedia.org/wiki/Coefficient_of_determination def fit_error xys y_bar = sigma(xys) { |x, y| y } / xys.size.to_f ss_tot = sigma(xys) { |x, y| (y - y_bar) ** 2 } ss_err = sigma(xys) { |x, y| (yield(x) - y) ** 2 } 1 - (ss_err / ss_tot) end ## # To fit a functional form: y = ae^(bx). # # Takes x and y values and returns [a, b, r^2]. # # See: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html def fit_exponential xs, ys n = xs.size xys = xs.zip(ys) sxlny = sigma(xys) { |x,y| x * Math.log(y) } slny = sigma(xys) { |x,y| Math.log(y) } sx2 = sigma(xys) { |x,y| x * x } sx = sigma xs c = n * sx2 - sx ** 2 a = (slny * sx2 - sx * sxlny) / c b = ( n * sxlny - sx * slny ) / c return Math.exp(a), b, fit_error(xys) { |x| Math.exp(a + b * x) } end ## # To fit a functional form: y = a + b*ln(x). # # Takes x and y values and returns [a, b, r^2]. # # See: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html def fit_logarithmic xs, ys n = xs.size xys = xs.zip(ys) slnx2 = sigma(xys) { |x,y| Math.log(x) ** 2 } slnx = sigma(xys) { |x,y| Math.log(x) } sylnx = sigma(xys) { |x,y| y * Math.log(x) } sy = sigma(xys) { |x,y| y } c = n * slnx2 - slnx ** 2 b = ( n * sylnx - sy * slnx ) / c a = (sy - b * slnx) / n return a, b, fit_error(xys) { |x| a + b * Math.log(x) } end ## # Fits the functional form: a + bx. # # Takes x and y values and returns [a, b, r^2]. # # See: http://mathworld.wolfram.com/LeastSquaresFitting.html def fit_linear xs, ys n = xs.size xys = xs.zip(ys) sx = sigma xs sy = sigma ys sx2 = sigma(xs) { |x| x ** 2 } sxy = sigma(xys) { |x,y| x * y } c = n * sx2 - sx**2 a = (sy * sx2 - sx * sxy) / c b = ( n * sxy - sx * sy ) / c return a, b, fit_error(xys) { |x| a + b * x } end ## # To fit a functional form: y = ax^b. # # Takes x and y values and returns [a, b, r^2]. # # See: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html def fit_power xs, ys n = xs.size xys = xs.zip(ys) slnxlny = sigma(xys) { |x, y| Math.log(x) * Math.log(y) } slnx = sigma(xs) { |x | Math.log(x) } slny = sigma(ys) { | y| Math.log(y) } slnx2 = sigma(xs) { |x | Math.log(x) ** 2 } b = (n * slnxlny - slnx * slny) / (n * slnx2 - slnx ** 2); a = (slny - b * slnx) / n return Math.exp(a), b, fit_error(xys) { |x| (Math.exp(a) * (x ** b)) } end ## # Enumerates over +enum+ mapping +block+ if given, returning the # sum of the result. Eg: # # sigma([1, 2, 3]) # => 1 + 2 + 3 => 7 # sigma([1, 2, 3]) { |n| n ** 2 } # => 1 + 4 + 9 => 14 def sigma enum, &block enum = enum.map(&block) if block enum.inject { |sum, n| sum + n } end ## # Returns a proc that calls the specified fit method and asserts # that the error is within a tolerable threshold. def validation_for_fit msg, threshold proc do |range, times| a, b, rr = send "fit_#{msg}", range, times assert_operator rr, :>=, threshold [a, b, rr] end end end end class MiniTest::Spec ## # This is used to define a new benchmark method. You usually don't # use this directly and is intended for those needing to write new # performance curve fits (eg: you need a specific polynomial fit). # # See ::bench_performance_linear for an example of how to use this. def self.bench name, &block define_method "bench_#{name.gsub(/\W+/, '_')}", &block end ## # Specifies the ranges used for benchmarking for that class. # # bench_range do # bench_exp(2, 16, 2) # end # # See Unit::TestCase.bench_range for more details. def self.bench_range &block return super unless block meta = (class << self; self; end) meta.send :define_method, "bench_range", &block end ## # Create a benchmark that verifies that the performance is linear. # # describe "my class" do # bench_performance_linear "fast_algorithm", 0.9999 do |n| # @obj.fast_algorithm(n) # end # end def self.bench_performance_linear name, threshold = 0.99, &work bench name do assert_performance_linear threshold, &work end end ## # Create a benchmark that verifies that the performance is constant. # # describe "my class" do # bench_performance_constant "zoom_algorithm!" do |n| # @obj.zoom_algorithm!(n) # end # end def self.bench_performance_constant name, threshold = 0.99, &work bench name do assert_performance_constant threshold, &work end end ## # Create a benchmark that verifies that the performance is exponential. # # describe "my class" do # bench_performance_exponential "algorithm" do |n| # @obj.algorithm(n) # end # end def self.bench_performance_exponential name, threshold = 0.99, &work bench name do assert_performance_exponential threshold, &work end end end