D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
opt
/
td-agent
/
embedded
/
lib
/
ruby
/
gems
/
2.1.0
/
gems
/
cool.io-1.5.1
/
ext
/
libev
/
Filename :
ev.c
back
Copy
/* * libev event processing core, watcher management * * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de> * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, the contents of this file may be used under the terms of * the GNU General Public License ("GPL") version 2 or any later version, * in which case the provisions of the GPL are applicable instead of * the above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the BSD license, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file under * either the BSD or the GPL. */ /* ########## COOLIO PATCHERY HO! ########## */ #include "ruby.h" /* ######################################## */ /* this big block deduces configuration from config.h */ #ifndef EV_STANDALONE # ifdef EV_CONFIG_H # include EV_CONFIG_H # else # include "config.h" # endif # if HAVE_FLOOR # ifndef EV_USE_FLOOR # define EV_USE_FLOOR 1 # endif # endif # if HAVE_CLOCK_SYSCALL # ifndef EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 1 # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 1 # endif # endif # elif !defined EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 0 # endif # if HAVE_CLOCK_GETTIME # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 1 # endif # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif # else # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 0 # endif # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif # endif # if HAVE_NANOSLEEP # ifndef EV_USE_NANOSLEEP # define EV_USE_NANOSLEEP EV_FEATURE_OS # endif # else # undef EV_USE_NANOSLEEP # define EV_USE_NANOSLEEP 0 # endif # if HAVE_SELECT && HAVE_SYS_SELECT_H # ifndef EV_USE_SELECT # define EV_USE_SELECT EV_FEATURE_BACKENDS # endif # else # undef EV_USE_SELECT # define EV_USE_SELECT 0 # endif # if HAVE_POLL && HAVE_POLL_H # ifndef EV_USE_POLL # define EV_USE_POLL EV_FEATURE_BACKENDS # endif # else # undef EV_USE_POLL # define EV_USE_POLL 0 # endif # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H # ifndef EV_USE_EPOLL # define EV_USE_EPOLL EV_FEATURE_BACKENDS # endif # else # undef EV_USE_EPOLL # define EV_USE_EPOLL 0 # endif # if HAVE_KQUEUE && HAVE_SYS_EVENT_H # ifndef EV_USE_KQUEUE # define EV_USE_KQUEUE EV_FEATURE_BACKENDS # endif # else # undef EV_USE_KQUEUE # define EV_USE_KQUEUE 0 # endif # if HAVE_PORT_H && HAVE_PORT_CREATE # ifndef EV_USE_PORT # define EV_USE_PORT EV_FEATURE_BACKENDS # endif # else # undef EV_USE_PORT # define EV_USE_PORT 0 # endif # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H # ifndef EV_USE_INOTIFY # define EV_USE_INOTIFY EV_FEATURE_OS # endif # else # undef EV_USE_INOTIFY # define EV_USE_INOTIFY 0 # endif # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H # ifndef EV_USE_SIGNALFD # define EV_USE_SIGNALFD EV_FEATURE_OS # endif # else # undef EV_USE_SIGNALFD # define EV_USE_SIGNALFD 0 # endif # if HAVE_EVENTFD # ifndef EV_USE_EVENTFD # define EV_USE_EVENTFD EV_FEATURE_OS # endif # else # undef EV_USE_EVENTFD # define EV_USE_EVENTFD 0 # endif #endif #include <stdlib.h> #include <string.h> #include <fcntl.h> #include <stddef.h> #include <stdio.h> #include <assert.h> #include <errno.h> #include <sys/types.h> #include <time.h> #include <limits.h> #include <signal.h> #ifdef EV_H # include EV_H #else # include "ev.h" #endif #if EV_NO_THREADS # undef EV_NO_SMP # define EV_NO_SMP 1 # undef ECB_NO_THREADS # define ECB_NO_THREADS 1 #endif #if EV_NO_SMP # undef EV_NO_SMP # define ECB_NO_SMP 1 #endif #ifndef _WIN32 # include <sys/time.h> # include <sys/wait.h> # include <unistd.h> #else # include <io.h> # define WIN32_LEAN_AND_MEAN # define FD_SETSIZE 1024 # include <winsock2.h> # include <windows.h> # ifndef EV_SELECT_IS_WINSOCKET # define EV_SELECT_IS_WINSOCKET 1 # endif # undef EV_AVOID_STDIO #endif /* OS X, in its infinite idiocy, actually HARDCODES * a limit of 1024 into their select. Where people have brains, * OS X engineers apparently have a vacuum. Or maybe they were * ordered to have a vacuum, or they do anything for money. * This might help. Or not. */ #define _DARWIN_UNLIMITED_SELECT 1 /* this block tries to deduce configuration from header-defined symbols and defaults */ /* try to deduce the maximum number of signals on this platform */ #if defined EV_NSIG /* use what's provided */ #elif defined NSIG # define EV_NSIG (NSIG) #elif defined _NSIG # define EV_NSIG (_NSIG) #elif defined SIGMAX # define EV_NSIG (SIGMAX+1) #elif defined SIG_MAX # define EV_NSIG (SIG_MAX+1) #elif defined _SIG_MAX # define EV_NSIG (_SIG_MAX+1) #elif defined MAXSIG # define EV_NSIG (MAXSIG+1) #elif defined MAX_SIG # define EV_NSIG (MAX_SIG+1) #elif defined SIGARRAYSIZE # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */ #elif defined _sys_nsig # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */ #else # define EV_NSIG (8 * sizeof (sigset_t) + 1) #endif #ifndef EV_USE_FLOOR # define EV_USE_FLOOR 0 #endif #ifndef EV_USE_CLOCK_SYSCALL # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS # else # define EV_USE_CLOCK_SYSCALL 0 # endif #endif #if !(_POSIX_TIMERS > 0) # ifndef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 0 # endif # ifndef EV_USE_REALTIME # define EV_USE_REALTIME 0 # endif #endif #ifndef EV_USE_MONOTONIC # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0 # define EV_USE_MONOTONIC EV_FEATURE_OS # else # define EV_USE_MONOTONIC 0 # endif #endif #ifndef EV_USE_REALTIME # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL #endif #ifndef EV_USE_NANOSLEEP # if _POSIX_C_SOURCE >= 199309L # define EV_USE_NANOSLEEP EV_FEATURE_OS # else # define EV_USE_NANOSLEEP 0 # endif #endif #ifndef EV_USE_SELECT # define EV_USE_SELECT EV_FEATURE_BACKENDS #endif #ifndef EV_USE_POLL # ifdef _WIN32 # define EV_USE_POLL 0 # else # define EV_USE_POLL EV_FEATURE_BACKENDS # endif #endif #ifndef EV_USE_EPOLL # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) # define EV_USE_EPOLL EV_FEATURE_BACKENDS # else # define EV_USE_EPOLL 0 # endif #endif #ifndef EV_USE_KQUEUE # define EV_USE_KQUEUE 0 #endif #ifndef EV_USE_PORT # define EV_USE_PORT 0 #endif #ifndef EV_USE_INOTIFY # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) # define EV_USE_INOTIFY EV_FEATURE_OS # else # define EV_USE_INOTIFY 0 # endif #endif #ifndef EV_PID_HASHSIZE # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1 #endif #ifndef EV_INOTIFY_HASHSIZE # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1 #endif #ifndef EV_USE_EVENTFD # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) # define EV_USE_EVENTFD EV_FEATURE_OS # else # define EV_USE_EVENTFD 0 # endif #endif #ifndef EV_USE_SIGNALFD # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) # define EV_USE_SIGNALFD EV_FEATURE_OS # else # define EV_USE_SIGNALFD 0 # endif #endif #if 0 /* debugging */ # define EV_VERIFY 3 # define EV_USE_4HEAP 1 # define EV_HEAP_CACHE_AT 1 #endif #ifndef EV_VERIFY # define EV_VERIFY (EV_FEATURE_API ? 1 : 0) #endif #ifndef EV_USE_4HEAP # define EV_USE_4HEAP EV_FEATURE_DATA #endif #ifndef EV_HEAP_CACHE_AT # define EV_HEAP_CACHE_AT EV_FEATURE_DATA #endif #ifdef ANDROID /* supposedly, android doesn't typedef fd_mask */ # undef EV_USE_SELECT # define EV_USE_SELECT 0 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */ # undef EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 0 #endif /* aix's poll.h seems to cause lots of trouble */ #ifdef _AIX /* AIX has a completely broken poll.h header */ # undef EV_USE_POLL # define EV_USE_POLL 0 #endif /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */ /* which makes programs even slower. might work on other unices, too. */ #if EV_USE_CLOCK_SYSCALL # include <sys/syscall.h> # ifdef SYS_clock_gettime # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts)) # undef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 1 # else # undef EV_USE_CLOCK_SYSCALL # define EV_USE_CLOCK_SYSCALL 0 # endif #endif /* this block fixes any misconfiguration where we know we run into trouble otherwise */ #ifndef CLOCK_MONOTONIC # undef EV_USE_MONOTONIC # define EV_USE_MONOTONIC 0 #endif #ifndef CLOCK_REALTIME # undef EV_USE_REALTIME # define EV_USE_REALTIME 0 #endif #if !EV_STAT_ENABLE # undef EV_USE_INOTIFY # define EV_USE_INOTIFY 0 #endif #if !EV_USE_NANOSLEEP /* hp-ux has it in sys/time.h, which we unconditionally include above */ # if !defined _WIN32 && !defined __hpux # include <sys/select.h> # endif #endif #if EV_USE_INOTIFY # include <sys/statfs.h> # include <sys/inotify.h> /* some very old inotify.h headers don't have IN_DONT_FOLLOW */ # ifndef IN_DONT_FOLLOW # undef EV_USE_INOTIFY # define EV_USE_INOTIFY 0 # endif #endif #if EV_USE_EVENTFD /* our minimum requirement is glibc 2.7 which has the stub, but not the header */ # include <stdint.h> # ifndef EFD_NONBLOCK # define EFD_NONBLOCK O_NONBLOCK # endif # ifndef EFD_CLOEXEC # ifdef O_CLOEXEC # define EFD_CLOEXEC O_CLOEXEC # else # define EFD_CLOEXEC 02000000 # endif # endif EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags); #endif #if EV_USE_SIGNALFD /* our minimum requirement is glibc 2.7 which has the stub, but not the header */ # include <stdint.h> # ifndef SFD_NONBLOCK # define SFD_NONBLOCK O_NONBLOCK # endif # ifndef SFD_CLOEXEC # ifdef O_CLOEXEC # define SFD_CLOEXEC O_CLOEXEC # else # define SFD_CLOEXEC 02000000 # endif # endif EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags); struct signalfd_siginfo { uint32_t ssi_signo; char pad[128 - sizeof (uint32_t)]; }; #endif /**/ #if EV_VERIFY >= 3 # define EV_FREQUENT_CHECK ev_verify (EV_A) #else # define EV_FREQUENT_CHECK do { } while (0) #endif /* * This is used to work around floating point rounding problems. * This value is good at least till the year 4000. */ #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */ /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */ #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0) #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0) /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */ /* ECB.H BEGIN */ /* * libecb - http://software.schmorp.de/pkg/libecb * * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de> * Copyright (©) 2011 Emanuele Giaquinta * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, the contents of this file may be used under the terms of * the GNU General Public License ("GPL") version 2 or any later version, * in which case the provisions of the GPL are applicable instead of * the above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the BSD license, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file under * either the BSD or the GPL. */ #ifndef ECB_H #define ECB_H /* 16 bits major, 16 bits minor */ #define ECB_VERSION 0x00010005 #ifdef _WIN32 typedef signed char int8_t; typedef unsigned char uint8_t; typedef signed short int16_t; typedef unsigned short uint16_t; typedef signed int int32_t; typedef unsigned int uint32_t; #if __GNUC__ typedef signed long long int64_t; typedef unsigned long long uint64_t; #else /* _MSC_VER || __BORLANDC__ */ typedef signed __int64 int64_t; typedef unsigned __int64 uint64_t; #endif #ifdef _WIN64 #define ECB_PTRSIZE 8 typedef uint64_t uintptr_t; typedef int64_t intptr_t; #else #define ECB_PTRSIZE 4 typedef uint32_t uintptr_t; typedef int32_t intptr_t; #endif #else #include <inttypes.h> #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU #define ECB_PTRSIZE 8 #else #define ECB_PTRSIZE 4 #endif #endif #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) /* work around x32 idiocy by defining proper macros */ #if ECB_GCC_AMD64 || ECB_MSVC_AMD64 #if _ILP32 #define ECB_AMD64_X32 1 #else #define ECB_AMD64 1 #endif #endif /* many compilers define _GNUC_ to some versions but then only implement * what their idiot authors think are the "more important" extensions, * causing enormous grief in return for some better fake benchmark numbers. * or so. * we try to detect these and simply assume they are not gcc - if they have * an issue with that they should have done it right in the first place. */ #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__ #define ECB_GCC_VERSION(major,minor) 0 #else #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) #endif #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor))) #if __clang__ && defined __has_builtin #define ECB_CLANG_BUILTIN(x) __has_builtin (x) #else #define ECB_CLANG_BUILTIN(x) 0 #endif #if __clang__ && defined __has_extension #define ECB_CLANG_EXTENSION(x) __has_extension (x) #else #define ECB_CLANG_EXTENSION(x) 0 #endif #define ECB_CPP (__cplusplus+0) #define ECB_CPP11 (__cplusplus >= 201103L) #if ECB_CPP #define ECB_C 0 #define ECB_STDC_VERSION 0 #else #define ECB_C 1 #define ECB_STDC_VERSION __STDC_VERSION__ #endif #define ECB_C99 (ECB_STDC_VERSION >= 199901L) #define ECB_C11 (ECB_STDC_VERSION >= 201112L) #if ECB_CPP #define ECB_EXTERN_C extern "C" #define ECB_EXTERN_C_BEG ECB_EXTERN_C { #define ECB_EXTERN_C_END } #else #define ECB_EXTERN_C extern #define ECB_EXTERN_C_BEG #define ECB_EXTERN_C_END #endif /*****************************************************************************/ /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */ /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */ #if ECB_NO_THREADS #define ECB_NO_SMP 1 #endif #if ECB_NO_SMP #define ECB_MEMORY_FENCE do { } while (0) #endif /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ #if __xlC__ && ECB_CPP #include <builtins.h> #endif #if 1400 <= _MSC_VER #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */ #endif #ifndef ECB_MEMORY_FENCE #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 #if __i386 || __i386__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif ECB_GCC_AMD64 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") #elif defined __ARM_ARCH_2__ \ || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \ || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \ || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \ || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \ || defined __ARM_ARCH_5TEJ__ /* should not need any, unless running old code on newer cpu - arm doesn't support that */ #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \ || defined __ARM_ARCH_6T2__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") #elif __aarch64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") #elif defined __s390__ || defined __s390x__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") #elif defined __mips__ /* GNU/Linux emulates sync on mips1 architectures, so we force its use */ /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */ #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory") #elif defined __alpha__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory") #elif defined __hppa__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") #elif defined __ia64__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory") #elif defined __m68k__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") #elif defined __m88k__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory") #elif defined __sh__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") #endif #endif #endif #ifndef ECB_MEMORY_FENCE #if ECB_GCC_VERSION(4,7) /* see comment below (stdatomic.h) about the C11 memory model. */ #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) #elif ECB_CLANG_EXTENSION(c_atomic) /* see comment below (stdatomic.h) about the C11 memory model. */ #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ #define ECB_MEMORY_FENCE __sync_synchronize () #elif _MSC_VER >= 1500 /* VC++ 2008 */ /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier() #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */ #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier() #elif _MSC_VER >= 1400 /* VC++ 2005 */ #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) #define ECB_MEMORY_FENCE _ReadWriteBarrier () #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */ #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier () #elif defined _WIN32 #include <WinNT.h> #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 #include <mbarrier.h> #define ECB_MEMORY_FENCE __machine_rw_barrier () #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () #elif __xlC__ #define ECB_MEMORY_FENCE __sync () #endif #endif #ifndef ECB_MEMORY_FENCE #if ECB_C11 && !defined __STDC_NO_ATOMICS__ /* we assume that these memory fences work on all variables/all memory accesses, */ /* not just C11 atomics and atomic accesses */ #include <stdatomic.h> /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */ /* any fence other than seq_cst, which isn't very efficient for us. */ /* Why that is, we don't know - either the C11 memory model is quite useless */ /* for most usages, or gcc and clang have a bug */ /* I *currently* lean towards the latter, and inefficiently implement */ /* all three of ecb's fences as a seq_cst fence */ /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */ /* for all __atomic_thread_fence's except seq_cst */ #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) #endif #endif #ifndef ECB_MEMORY_FENCE #if !ECB_AVOID_PTHREADS /* * if you get undefined symbol references to pthread_mutex_lock, * or failure to find pthread.h, then you should implement * the ECB_MEMORY_FENCE operations for your cpu/compiler * OR provide pthread.h and link against the posix thread library * of your system. */ #include <pthread.h> #define ECB_NEEDS_PTHREADS 1 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER; #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0) #endif #endif #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE #endif #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE #endif /*****************************************************************************/ #if ECB_CPP #define ecb_inline static inline #elif ECB_GCC_VERSION(2,5) #define ecb_inline static __inline__ #elif ECB_C99 #define ecb_inline static inline #else #define ecb_inline static #endif #if ECB_GCC_VERSION(3,3) #define ecb_restrict __restrict__ #elif ECB_C99 #define ecb_restrict restrict #else #define ecb_restrict #endif typedef int ecb_bool; #define ECB_CONCAT_(a, b) a ## b #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) #define ECB_STRINGIFY_(a) # a #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr)) #define ecb_function_ ecb_inline #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8) #define ecb_attribute(attrlist) __attribute__ (attrlist) #else #define ecb_attribute(attrlist) #endif #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p) #define ecb_is_constant(expr) __builtin_constant_p (expr) #else /* possible C11 impl for integral types typedef struct ecb_is_constant_struct ecb_is_constant_struct; #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */ #define ecb_is_constant(expr) 0 #endif #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect) #define ecb_expect(expr,value) __builtin_expect ((expr),(value)) #else #define ecb_expect(expr,value) (expr) #endif #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch) #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) #else #define ecb_prefetch(addr,rw,locality) #endif /* no emulation for ecb_decltype */ #if ECB_CPP11 // older implementations might have problems with decltype(x)::type, work around it template<class T> struct ecb_decltype_t { typedef T type; }; #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8) #define ecb_decltype(x) __typeof__ (x) #endif #if _MSC_VER >= 1300 #define ecb_deprecated __declspec (deprecated) #else #define ecb_deprecated ecb_attribute ((__deprecated__)) #endif #if _MSC_VER >= 1500 #define ecb_deprecated_message(msg) __declspec (deprecated (msg)) #elif ECB_GCC_VERSION(4,5) #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg)) #else #define ecb_deprecated_message(msg) ecb_deprecated #endif #if _MSC_VER >= 1400 #define ecb_noinline __declspec (noinline) #else #define ecb_noinline ecb_attribute ((__noinline__)) #endif #define ecb_unused ecb_attribute ((__unused__)) #define ecb_const ecb_attribute ((__const__)) #define ecb_pure ecb_attribute ((__pure__)) #if ECB_C11 || __IBMC_NORETURN /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */ #define ecb_noreturn _Noreturn #elif ECB_CPP11 #define ecb_noreturn [[noreturn]] #elif _MSC_VER >= 1200 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */ #define ecb_noreturn __declspec (noreturn) #else #define ecb_noreturn ecb_attribute ((__noreturn__)) #endif #if ECB_GCC_VERSION(4,3) #define ecb_artificial ecb_attribute ((__artificial__)) #define ecb_hot ecb_attribute ((__hot__)) #define ecb_cold ecb_attribute ((__cold__)) #else #define ecb_artificial #define ecb_hot #define ecb_cold #endif /* put around conditional expressions if you are very sure that the */ /* expression is mostly true or mostly false. note that these return */ /* booleans, not the expression. */ #define ecb_expect_false(expr) ecb_expect (!!(expr), 0) #define ecb_expect_true(expr) ecb_expect (!!(expr), 1) /* for compatibility to the rest of the world */ #define ecb_likely(expr) ecb_expect_true (expr) #define ecb_unlikely(expr) ecb_expect_false (expr) /* count trailing zero bits and count # of one bits */ #if ECB_GCC_VERSION(3,4) \ || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ && ECB_CLANG_BUILTIN(__builtin_popcount)) /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */ #define ecb_ld32(x) (__builtin_clz (x) ^ 31) #define ecb_ld64(x) (__builtin_clzll (x) ^ 63) #define ecb_ctz32(x) __builtin_ctz (x) #define ecb_ctz64(x) __builtin_ctzll (x) #define ecb_popcount32(x) __builtin_popcount (x) /* no popcountll */ #else ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); ecb_function_ ecb_const int ecb_ctz32 (uint32_t x) { #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) unsigned long r; _BitScanForward (&r, x); return (int)r; #else int r = 0; x &= ~x + 1; /* this isolates the lowest bit */ #if ECB_branchless_on_i386 r += !!(x & 0xaaaaaaaa) << 0; r += !!(x & 0xcccccccc) << 1; r += !!(x & 0xf0f0f0f0) << 2; r += !!(x & 0xff00ff00) << 3; r += !!(x & 0xffff0000) << 4; #else if (x & 0xaaaaaaaa) r += 1; if (x & 0xcccccccc) r += 2; if (x & 0xf0f0f0f0) r += 4; if (x & 0xff00ff00) r += 8; if (x & 0xffff0000) r += 16; #endif return r; #endif } ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); ecb_function_ ecb_const int ecb_ctz64 (uint64_t x) { #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) unsigned long r; _BitScanForward64 (&r, x); return (int)r; #else int shift = x & 0xffffffff ? 0 : 32; return ecb_ctz32 (x >> shift) + shift; #endif } ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); ecb_function_ ecb_const int ecb_popcount32 (uint32_t x) { x -= (x >> 1) & 0x55555555; x = ((x >> 2) & 0x33333333) + (x & 0x33333333); x = ((x >> 4) + x) & 0x0f0f0f0f; x *= 0x01010101; return x >> 24; } ecb_function_ ecb_const int ecb_ld32 (uint32_t x); ecb_function_ ecb_const int ecb_ld32 (uint32_t x) { #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) unsigned long r; _BitScanReverse (&r, x); return (int)r; #else int r = 0; if (x >> 16) { x >>= 16; r += 16; } if (x >> 8) { x >>= 8; r += 8; } if (x >> 4) { x >>= 4; r += 4; } if (x >> 2) { x >>= 2; r += 2; } if (x >> 1) { r += 1; } return r; #endif } ecb_function_ ecb_const int ecb_ld64 (uint64_t x); ecb_function_ ecb_const int ecb_ld64 (uint64_t x) { #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) unsigned long r; _BitScanReverse64 (&r, x); return (int)r; #else int r = 0; if (x >> 32) { x >>= 32; r += 32; } return r + ecb_ld32 (x); #endif } #endif ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x); ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x); ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x) { return ( (x * 0x0802U & 0x22110U) | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; } ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x); ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x) { x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); x = ( x >> 8 ) | ( x << 8); return x; } ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x); ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x) { x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); x = ( x >> 16 ) | ( x << 16); return x; } /* popcount64 is only available on 64 bit cpus as gcc builtin */ /* so for this version we are lazy */ ecb_function_ ecb_const int ecb_popcount64 (uint64_t x); ecb_function_ ecb_const int ecb_popcount64 (uint64_t x) { return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); } ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count); ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count); ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count); ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count); ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) #define ecb_bswap16(x) __builtin_bswap16 (x) #else #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) #endif #define ecb_bswap32(x) __builtin_bswap32 (x) #define ecb_bswap64(x) __builtin_bswap64 (x) #elif _MSC_VER #include <stdlib.h> #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x))) #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x))) #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x))) #else ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x); ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x) { return ecb_rotl16 (x, 8); } ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x); ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x) { return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); } ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x); ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x) { return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); } #endif #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable) #define ecb_unreachable() __builtin_unreachable () #else /* this seems to work fine, but gcc always emits a warning for it :/ */ ecb_inline ecb_noreturn void ecb_unreachable (void); ecb_inline ecb_noreturn void ecb_unreachable (void) { } #endif /* try to tell the compiler that some condition is definitely true */ #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void); ecb_inline ecb_const uint32_t ecb_byteorder_helper (void) { /* the union code still generates code under pressure in gcc, */ /* but less than using pointers, and always seems to */ /* successfully return a constant. */ /* the reason why we have this horrible preprocessor mess */ /* is to avoid it in all cases, at least on common architectures */ /* or when using a recent enough gcc version (>= 4.6) */ #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__) #define ECB_LITTLE_ENDIAN 1 return 0x44332211; #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \ || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__) #define ECB_BIG_ENDIAN 1 return 0x11223344; #else union { uint8_t c[4]; uint32_t u; } u = { 0x11, 0x22, 0x33, 0x44 }; return u.u; #endif } ecb_inline ecb_const ecb_bool ecb_big_endian (void); ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; } ecb_inline ecb_const ecb_bool ecb_little_endian (void); ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; } #if ECB_GCC_VERSION(3,0) || ECB_C99 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) #else #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) #endif #if ECB_CPP template<typename T> static inline T ecb_div_rd (T val, T div) { return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; } template<typename T> static inline T ecb_div_ru (T val, T div) { return val < 0 ? - ((-val ) / div) : (val + div - 1) / div; } #else #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) #endif #if ecb_cplusplus_does_not_suck /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ template<typename T, int N> static inline int ecb_array_length (const T (&arr)[N]) { return N; } #else #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) #endif ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x) { unsigned int s = (x & 0x8000) << (31 - 15); int e = (x >> 10) & 0x001f; unsigned int m = x & 0x03ff; if (ecb_expect_false (e == 31)) /* infinity or NaN */ e = 255 - (127 - 15); else if (ecb_expect_false (!e)) { if (ecb_expect_true (!m)) /* zero, handled by code below by forcing e to 0 */ e = 0 - (127 - 15); else { /* subnormal, renormalise */ unsigned int s = 10 - ecb_ld32 (m); m = (m << s) & 0x3ff; /* mask implicit bit */ e -= s - 1; } } /* e and m now are normalised, or zero, (or inf or nan) */ e += 127 - 15; return s | (e << 23) | (m << (23 - 10)); } ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x) { unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ unsigned int m = x & 0x007fffff; x &= 0x7fffffff; /* if it's within range of binary16 normals, use fast path */ if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff)) { /* mantissa round-to-even */ m += 0x00000fff + ((m >> (23 - 10)) & 1); /* handle overflow */ if (ecb_expect_false (m >= 0x00800000)) { m >>= 1; e += 1; } return s | (e << 10) | (m >> (23 - 10)); } /* handle large numbers and infinity */ if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000)) return s | 0x7c00; /* handle zero, subnormals and small numbers */ if (ecb_expect_true (x < 0x38800000)) { /* zero */ if (ecb_expect_true (!x)) return s; /* handle subnormals */ /* too small, will be zero */ if (e < (14 - 24)) /* might not be sharp, but is good enough */ return s; m |= 0x00800000; /* make implicit bit explicit */ /* very tricky - we need to round to the nearest e (+10) bit value */ { unsigned int bits = 14 - e; unsigned int half = (1 << (bits - 1)) - 1; unsigned int even = (m >> bits) & 1; /* if this overflows, we will end up with a normalised number */ m = (m + half + even) >> bits; } return s | m; } /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ m >>= 13; return s | 0x7c00 | m | !m; } /*******************************************************************************/ /* floating point stuff, can be disabled by defining ECB_NO_LIBM */ /* basically, everything uses "ieee pure-endian" floating point numbers */ /* the only noteworthy exception is ancient armle, which uses order 43218765 */ #if 0 \ || __i386 || __i386__ \ || ECB_GCC_AMD64 \ || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ || defined __s390__ || defined __s390x__ \ || defined __mips__ \ || defined __alpha__ \ || defined __hppa__ \ || defined __ia64__ \ || defined __m68k__ \ || defined __m88k__ \ || defined __sh__ \ || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ || defined __aarch64__ #define ECB_STDFP 1 #include <string.h> /* for memcpy */ #else #define ECB_STDFP 0 #endif #ifndef ECB_NO_LIBM #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */ /* only the oldest of old doesn't have this one. solaris. */ #ifdef INFINITY #define ECB_INFINITY INFINITY #else #define ECB_INFINITY HUGE_VAL #endif #ifdef NAN #define ECB_NAN NAN #else #define ECB_NAN ECB_INFINITY #endif #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L #define ecb_ldexpf(x,e) ldexpf ((x), (e)) #define ecb_frexpf(x,e) frexpf ((x), (e)) #else #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e)) #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e)) #endif /* convert a float to ieee single/binary32 */ ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x); ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x) { uint32_t r; #if ECB_STDFP memcpy (&r, &x, 4); #else /* slow emulation, works for anything but -0 */ uint32_t m; int e; if (x == 0e0f ) return 0x00000000U; if (x > +3.40282346638528860e+38f) return 0x7f800000U; if (x < -3.40282346638528860e+38f) return 0xff800000U; if (x != x ) return 0x7fbfffffU; m = ecb_frexpf (x, &e) * 0x1000000U; r = m & 0x80000000U; if (r) m = -m; if (e <= -126) { m &= 0xffffffU; m >>= (-125 - e); e = -126; } r |= (e + 126) << 23; r |= m & 0x7fffffU; #endif return r; } /* converts an ieee single/binary32 to a float */ ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x); ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x) { float r; #if ECB_STDFP memcpy (&r, &x, 4); #else /* emulation, only works for normals and subnormals and +0 */ int neg = x >> 31; int e = (x >> 23) & 0xffU; x &= 0x7fffffU; if (e) x |= 0x800000U; else e = 1; /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126); r = neg ? -r : r; #endif return r; } /* convert a double to ieee double/binary64 */ ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x); ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x) { uint64_t r; #if ECB_STDFP memcpy (&r, &x, 8); #else /* slow emulation, works for anything but -0 */ uint64_t m; int e; if (x == 0e0 ) return 0x0000000000000000U; if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U; if (x < -1.79769313486231470e+308) return 0xfff0000000000000U; if (x != x ) return 0X7ff7ffffffffffffU; m = frexp (x, &e) * 0x20000000000000U; r = m & 0x8000000000000000;; if (r) m = -m; if (e <= -1022) { m &= 0x1fffffffffffffU; m >>= (-1021 - e); e = -1022; } r |= ((uint64_t)(e + 1022)) << 52; r |= m & 0xfffffffffffffU; #endif return r; } /* converts an ieee double/binary64 to a double */ ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x); ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x) { double r; #if ECB_STDFP memcpy (&r, &x, 8); #else /* emulation, only works for normals and subnormals and +0 */ int neg = x >> 63; int e = (x >> 52) & 0x7ffU; x &= 0xfffffffffffffU; if (e) x |= 0x10000000000000U; else e = 1; /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */ r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022); r = neg ? -r : r; #endif return r; } /* convert a float to ieee half/binary16 */ ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x); ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x) { return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x)); } /* convert an ieee half/binary16 to float */ ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x); ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x) { return ecb_binary32_to_float (ecb_binary16_to_binary32 (x)); } #endif #endif /* ECB.H END */ #if ECB_MEMORY_FENCE_NEEDS_PTHREADS /* if your architecture doesn't need memory fences, e.g. because it is * single-cpu/core, or if you use libev in a project that doesn't use libev * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling * libev, in which cases the memory fences become nops. * alternatively, you can remove this #error and link against libpthread, * which will then provide the memory fences. */ # error "memory fences not defined for your architecture, please report" #endif #ifndef ECB_MEMORY_FENCE # define ECB_MEMORY_FENCE do { } while (0) # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE #endif #define expect_false(cond) ecb_expect_false (cond) #define expect_true(cond) ecb_expect_true (cond) #define noinline ecb_noinline #define inline_size ecb_inline #if EV_FEATURE_CODE # define inline_speed ecb_inline #else # define inline_speed noinline static #endif #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) #if EV_MINPRI == EV_MAXPRI # define ABSPRI(w) (((W)w), 0) #else # define ABSPRI(w) (((W)w)->priority - EV_MINPRI) #endif #define EMPTY /* required for microsofts broken pseudo-c compiler */ #define EMPTY2(a,b) /* used to suppress some warnings */ typedef ev_watcher *W; typedef ev_watcher_list *WL; typedef ev_watcher_time *WT; #define ev_active(w) ((W)(w))->active #define ev_at(w) ((WT)(w))->at #if EV_USE_REALTIME /* sig_atomic_t is used to avoid per-thread variables or locking but still */ /* giving it a reasonably high chance of working on typical architectures */ static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ #endif #if EV_USE_MONOTONIC static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ #endif #ifndef EV_FD_TO_WIN32_HANDLE # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd) #endif #ifndef EV_WIN32_HANDLE_TO_FD # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0) #endif #ifndef EV_WIN32_CLOSE_FD # define EV_WIN32_CLOSE_FD(fd) close (fd) #endif #ifdef _WIN32 # include "ev_win32.c" #endif /*****************************************************************************/ /* define a suitable floor function (only used by periodics atm) */ #if EV_USE_FLOOR # include <math.h> # define ev_floor(v) floor (v) #else #include <float.h> /* a floor() replacement function, should be independent of ev_tstamp type */ noinline static ev_tstamp ev_floor (ev_tstamp v) { /* the choice of shift factor is not terribly important */ #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */ const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.; #else const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.; #endif /* argument too large for an unsigned long? */ if (expect_false (v >= shift)) { ev_tstamp f; if (v == v - 1.) return v; /* very large number */ f = shift * ev_floor (v * (1. / shift)); return f + ev_floor (v - f); } /* special treatment for negative args? */ if (expect_false (v < 0.)) { ev_tstamp f = -ev_floor (-v); return f - (f == v ? 0 : 1); } /* fits into an unsigned long */ return (unsigned long)v; } #endif /*****************************************************************************/ #ifdef __linux # include <sys/utsname.h> #endif noinline ecb_cold static unsigned int ev_linux_version (void) { #ifdef __linux unsigned int v = 0; struct utsname buf; int i; char *p = buf.release; if (uname (&buf)) return 0; for (i = 3+1; --i; ) { unsigned int c = 0; for (;;) { if (*p >= '0' && *p <= '9') c = c * 10 + *p++ - '0'; else { p += *p == '.'; break; } } v = (v << 8) | c; } return v; #else return 0; #endif } /*****************************************************************************/ #if EV_AVOID_STDIO noinline ecb_cold static void ev_printerr (const char *msg) { write (STDERR_FILENO, msg, strlen (msg)); } #endif static void (*syserr_cb)(const char *msg) EV_THROW; ecb_cold void ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW { syserr_cb = cb; } noinline ecb_cold static void ev_syserr (const char *msg) { if (!msg) msg = "(libev) system error"; if (syserr_cb) syserr_cb (msg); else { #if EV_AVOID_STDIO ev_printerr (msg); ev_printerr (": "); ev_printerr (strerror (errno)); ev_printerr ("\n"); #else perror (msg); #endif abort (); } } static void * ev_realloc_emul (void *ptr, long size) EV_THROW { /* some systems, notably openbsd and darwin, fail to properly * implement realloc (x, 0) (as required by both ansi c-89 and * the single unix specification, so work around them here. * recently, also (at least) fedora and debian started breaking it, * despite documenting it otherwise. */ if (size) return realloc (ptr, size); free (ptr); return 0; } static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul; ecb_cold void ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW { alloc = cb; } inline_speed void * ev_realloc (void *ptr, long size) { ptr = alloc (ptr, size); if (!ptr && size) { #if EV_AVOID_STDIO ev_printerr ("(libev) memory allocation failed, aborting.\n"); #else fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size); #endif abort (); } return ptr; } #define ev_malloc(size) ev_realloc (0, (size)) #define ev_free(ptr) ev_realloc ((ptr), 0) /*****************************************************************************/ /* set in reify when reification needed */ #define EV_ANFD_REIFY 1 /* file descriptor info structure */ typedef struct { WL head; unsigned char events; /* the events watched for */ unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */ unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ unsigned char unused; #if EV_USE_EPOLL unsigned int egen; /* generation counter to counter epoll bugs */ #endif #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP SOCKET handle; #endif #if EV_USE_IOCP OVERLAPPED or, ow; #endif } ANFD; /* stores the pending event set for a given watcher */ typedef struct { W w; int events; /* the pending event set for the given watcher */ } ANPENDING; #if EV_USE_INOTIFY /* hash table entry per inotify-id */ typedef struct { WL head; } ANFS; #endif /* Heap Entry */ #if EV_HEAP_CACHE_AT /* a heap element */ typedef struct { ev_tstamp at; WT w; } ANHE; #define ANHE_w(he) (he).w /* access watcher, read-write */ #define ANHE_at(he) (he).at /* access cached at, read-only */ #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ #else /* a heap element */ typedef WT ANHE; #define ANHE_w(he) (he) #define ANHE_at(he) (he)->at #define ANHE_at_cache(he) #endif #if EV_MULTIPLICITY struct ev_loop { ev_tstamp ev_rt_now; #define ev_rt_now ((loop)->ev_rt_now) #define VAR(name,decl) decl; #include "ev_vars.h" #undef VAR }; #include "ev_wrap.h" static struct ev_loop default_loop_struct; EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */ #else EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */ #define VAR(name,decl) static decl; #include "ev_vars.h" #undef VAR static int ev_default_loop_ptr; #endif #if EV_FEATURE_API # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A) # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A) # define EV_INVOKE_PENDING invoke_cb (EV_A) #else # define EV_RELEASE_CB (void)0 # define EV_ACQUIRE_CB (void)0 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A) #endif #define EVBREAK_RECURSE 0x80 /*****************************************************************************/ #ifndef EV_HAVE_EV_TIME ev_tstamp ev_time (void) EV_THROW { #if EV_USE_REALTIME if (expect_true (have_realtime)) { struct timespec ts; clock_gettime (CLOCK_REALTIME, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; } #endif struct timeval tv; gettimeofday (&tv, 0); return tv.tv_sec + tv.tv_usec * 1e-6; } #endif inline_size ev_tstamp get_clock (void) { #if EV_USE_MONOTONIC if (expect_true (have_monotonic)) { struct timespec ts; clock_gettime (CLOCK_MONOTONIC, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; } #endif return ev_time (); } #if EV_MULTIPLICITY ev_tstamp ev_now (EV_P) EV_THROW { return ev_rt_now; } #endif void ev_sleep (ev_tstamp delay) EV_THROW { if (delay > 0.) { #if EV_USE_NANOSLEEP struct timespec ts; EV_TS_SET (ts, delay); nanosleep (&ts, 0); #elif defined _WIN32 Sleep ((unsigned long)(delay * 1e3)); #else struct timeval tv; /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ /* something not guaranteed by newer posix versions, but guaranteed */ /* by older ones */ EV_TV_SET (tv, delay); select (0, 0, 0, 0, &tv); #endif } } /*****************************************************************************/ #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ /* find a suitable new size for the given array, */ /* hopefully by rounding to a nice-to-malloc size */ inline_size int array_nextsize (int elem, int cur, int cnt) { int ncur = cur + 1; do ncur <<= 1; while (cnt > ncur); /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */ if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) { ncur *= elem; ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); ncur = ncur - sizeof (void *) * 4; ncur /= elem; } return ncur; } noinline ecb_cold static void * array_realloc (int elem, void *base, int *cur, int cnt) { *cur = array_nextsize (elem, *cur, cnt); return ev_realloc (base, elem * *cur); } #define array_init_zero(base,count) \ memset ((void *)(base), 0, sizeof (*(base)) * (count)) #define array_needsize(type,base,cur,cnt,init) \ if (expect_false ((cnt) > (cur))) \ { \ ecb_unused int ocur_ = (cur); \ (base) = (type *)array_realloc \ (sizeof (type), (base), &(cur), (cnt)); \ init ((base) + (ocur_), (cur) - ocur_); \ } #if 0 #define array_slim(type,stem) \ if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ { \ stem ## max = array_roundsize (stem ## cnt >> 1); \ base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ } #endif #define array_free(stem, idx) \ ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 /*****************************************************************************/ /* dummy callback for pending events */ noinline static void pendingcb (EV_P_ ev_prepare *w, int revents) { } noinline void ev_feed_event (EV_P_ void *w, int revents) EV_THROW { W w_ = (W)w; int pri = ABSPRI (w_); if (expect_false (w_->pending)) pendings [pri][w_->pending - 1].events |= revents; else { w_->pending = ++pendingcnt [pri]; array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); pendings [pri][w_->pending - 1].w = w_; pendings [pri][w_->pending - 1].events = revents; } pendingpri = NUMPRI - 1; } inline_speed void feed_reverse (EV_P_ W w) { array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2); rfeeds [rfeedcnt++] = w; } inline_size void feed_reverse_done (EV_P_ int revents) { do ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents); while (rfeedcnt); } inline_speed void queue_events (EV_P_ W *events, int eventcnt, int type) { int i; for (i = 0; i < eventcnt; ++i) ev_feed_event (EV_A_ events [i], type); } /*****************************************************************************/ inline_speed void fd_event_nocheck (EV_P_ int fd, int revents) { ANFD *anfd = anfds + fd; ev_io *w; for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) { int ev = w->events & revents; if (ev) ev_feed_event (EV_A_ (W)w, ev); } } /* do not submit kernel events for fds that have reify set */ /* because that means they changed while we were polling for new events */ inline_speed void fd_event (EV_P_ int fd, int revents) { ANFD *anfd = anfds + fd; if (expect_true (!anfd->reify)) fd_event_nocheck (EV_A_ fd, revents); } void ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW { if (fd >= 0 && fd < anfdmax) fd_event_nocheck (EV_A_ fd, revents); } /* make sure the external fd watch events are in-sync */ /* with the kernel/libev internal state */ inline_size void fd_reify (EV_P) { int i; #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP for (i = 0; i < fdchangecnt; ++i) { int fd = fdchanges [i]; ANFD *anfd = anfds + fd; if (anfd->reify & EV__IOFDSET && anfd->head) { SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd); if (handle != anfd->handle) { unsigned long arg; assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0)); /* handle changed, but fd didn't - we need to do it in two steps */ backend_modify (EV_A_ fd, anfd->events, 0); anfd->events = 0; anfd->handle = handle; } } } #endif for (i = 0; i < fdchangecnt; ++i) { int fd = fdchanges [i]; ANFD *anfd = anfds + fd; ev_io *w; unsigned char o_events = anfd->events; unsigned char o_reify = anfd->reify; anfd->reify = 0; /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */ { anfd->events = 0; for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) anfd->events |= (unsigned char)w->events; if (o_events != anfd->events) o_reify = EV__IOFDSET; /* actually |= */ } if (o_reify & EV__IOFDSET) backend_modify (EV_A_ fd, o_events, anfd->events); } fdchangecnt = 0; } /* something about the given fd changed */ inline_size void fd_change (EV_P_ int fd, int flags) { unsigned char reify = anfds [fd].reify; anfds [fd].reify |= flags; if (expect_true (!reify)) { ++fdchangecnt; array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); fdchanges [fdchangecnt - 1] = fd; } } /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */ inline_speed ecb_cold void fd_kill (EV_P_ int fd) { ev_io *w; while ((w = (ev_io *)anfds [fd].head)) { ev_io_stop (EV_A_ w); ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); } } /* check whether the given fd is actually valid, for error recovery */ inline_size ecb_cold int fd_valid (int fd) { #ifdef _WIN32 return EV_FD_TO_WIN32_HANDLE (fd) != -1; #else return fcntl (fd, F_GETFD) != -1; #endif } /* called on EBADF to verify fds */ noinline ecb_cold static void fd_ebadf (EV_P) { int fd; for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) if (!fd_valid (fd) && errno == EBADF) fd_kill (EV_A_ fd); } /* called on ENOMEM in select/poll to kill some fds and retry */ noinline ecb_cold static void fd_enomem (EV_P) { int fd; for (fd = anfdmax; fd--; ) if (anfds [fd].events) { fd_kill (EV_A_ fd); break; } } /* usually called after fork if backend needs to re-arm all fds from scratch */ noinline static void fd_rearm_all (EV_P) { int fd; for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) { anfds [fd].events = 0; anfds [fd].emask = 0; fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY); } } /* used to prepare libev internal fd's */ /* this is not fork-safe */ inline_speed void fd_intern (int fd) { #ifdef _WIN32 unsigned long arg = 1; ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg); #else fcntl (fd, F_SETFD, FD_CLOEXEC); fcntl (fd, F_SETFL, O_NONBLOCK); #endif } /*****************************************************************************/ /* * the heap functions want a real array index. array index 0 is guaranteed to not * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives * the branching factor of the d-tree. */ /* * at the moment we allow libev the luxury of two heaps, * a small-code-size 2-heap one and a ~1.5kb larger 4-heap * which is more cache-efficient. * the difference is about 5% with 50000+ watchers. */ #if EV_USE_4HEAP #define DHEAP 4 #define HEAP0 (DHEAP - 1) /* index of first element in heap */ #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) #define UPHEAP_DONE(p,k) ((p) == (k)) /* away from the root */ inline_speed void downheap (ANHE *heap, int N, int k) { ANHE he = heap [k]; ANHE *E = heap + N + HEAP0; for (;;) { ev_tstamp minat; ANHE *minpos; ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; /* find minimum child */ if (expect_true (pos + DHEAP - 1 < E)) { /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); } else if (pos < E) { /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); } else break; if (ANHE_at (he) <= minat) break; heap [k] = *minpos; ev_active (ANHE_w (*minpos)) = k; k = minpos - heap; } heap [k] = he; ev_active (ANHE_w (he)) = k; } #else /* 4HEAP */ #define HEAP0 1 #define HPARENT(k) ((k) >> 1) #define UPHEAP_DONE(p,k) (!(p)) /* away from the root */ inline_speed void downheap (ANHE *heap, int N, int k) { ANHE he = heap [k]; for (;;) { int c = k << 1; if (c >= N + HEAP0) break; c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) ? 1 : 0; if (ANHE_at (he) <= ANHE_at (heap [c])) break; heap [k] = heap [c]; ev_active (ANHE_w (heap [k])) = k; k = c; } heap [k] = he; ev_active (ANHE_w (he)) = k; } #endif /* towards the root */ inline_speed void upheap (ANHE *heap, int k) { ANHE he = heap [k]; for (;;) { int p = HPARENT (k); if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he)) break; heap [k] = heap [p]; ev_active (ANHE_w (heap [k])) = k; k = p; } heap [k] = he; ev_active (ANHE_w (he)) = k; } /* move an element suitably so it is in a correct place */ inline_size void adjustheap (ANHE *heap, int N, int k) { if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)])) upheap (heap, k); else downheap (heap, N, k); } /* rebuild the heap: this function is used only once and executed rarely */ inline_size void reheap (ANHE *heap, int N) { int i; /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ for (i = 0; i < N; ++i) upheap (heap, i + HEAP0); } /*****************************************************************************/ /* associate signal watchers to a signal signal */ typedef struct { EV_ATOMIC_T pending; #if EV_MULTIPLICITY EV_P; #endif WL head; } ANSIG; static ANSIG signals [EV_NSIG - 1]; /*****************************************************************************/ #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE noinline ecb_cold static void evpipe_init (EV_P) { if (!ev_is_active (&pipe_w)) { int fds [2]; # if EV_USE_EVENTFD fds [0] = -1; fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC); if (fds [1] < 0 && errno == EINVAL) fds [1] = eventfd (0, 0); if (fds [1] < 0) # endif { while (pipe (fds)) ev_syserr ("(libev) error creating signal/async pipe"); fd_intern (fds [0]); } evpipe [0] = fds [0]; if (evpipe [1] < 0) evpipe [1] = fds [1]; /* first call, set write fd */ else { /* on subsequent calls, do not change evpipe [1] */ /* so that evpipe_write can always rely on its value. */ /* this branch does not do anything sensible on windows, */ /* so must not be executed on windows */ dup2 (fds [1], evpipe [1]); close (fds [1]); } fd_intern (evpipe [1]); ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ); ev_io_start (EV_A_ &pipe_w); ev_unref (EV_A); /* watcher should not keep loop alive */ } } inline_speed void evpipe_write (EV_P_ EV_ATOMIC_T *flag) { ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */ if (expect_true (*flag)) return; *flag = 1; ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */ pipe_write_skipped = 1; ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */ if (pipe_write_wanted) { int old_errno; pipe_write_skipped = 0; ECB_MEMORY_FENCE_RELEASE; old_errno = errno; /* save errno because write will clobber it */ #if EV_USE_EVENTFD if (evpipe [0] < 0) { uint64_t counter = 1; write (evpipe [1], &counter, sizeof (uint64_t)); } else #endif { #ifdef _WIN32 WSABUF buf; DWORD sent; buf.buf = &buf; buf.len = 1; WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0); #else write (evpipe [1], &(evpipe [1]), 1); #endif } errno = old_errno; } } /* called whenever the libev signal pipe */ /* got some events (signal, async) */ static void pipecb (EV_P_ ev_io *iow, int revents) { int i; if (revents & EV_READ) { #if EV_USE_EVENTFD if (evpipe [0] < 0) { uint64_t counter; read (evpipe [1], &counter, sizeof (uint64_t)); } else #endif { char dummy[4]; #ifdef _WIN32 WSABUF buf; DWORD recvd; DWORD flags = 0; buf.buf = dummy; buf.len = sizeof (dummy); WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0); #else read (evpipe [0], &dummy, sizeof (dummy)); #endif } } pipe_write_skipped = 0; ECB_MEMORY_FENCE; /* push out skipped, acquire flags */ #if EV_SIGNAL_ENABLE if (sig_pending) { sig_pending = 0; ECB_MEMORY_FENCE; for (i = EV_NSIG - 1; i--; ) if (expect_false (signals [i].pending)) ev_feed_signal_event (EV_A_ i + 1); } #endif #if EV_ASYNC_ENABLE if (async_pending) { async_pending = 0; ECB_MEMORY_FENCE; for (i = asynccnt; i--; ) if (asyncs [i]->sent) { asyncs [i]->sent = 0; ECB_MEMORY_FENCE_RELEASE; ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); } } #endif } /*****************************************************************************/ void ev_feed_signal (int signum) EV_THROW { #if EV_MULTIPLICITY EV_P; ECB_MEMORY_FENCE_ACQUIRE; EV_A = signals [signum - 1].loop; if (!EV_A) return; #endif signals [signum - 1].pending = 1; evpipe_write (EV_A_ &sig_pending); } static void ev_sighandler (int signum) { #ifdef _WIN32 signal (signum, ev_sighandler); #endif ev_feed_signal (signum); } noinline void ev_feed_signal_event (EV_P_ int signum) EV_THROW { WL w; if (expect_false (signum <= 0 || signum >= EV_NSIG)) return; --signum; #if EV_MULTIPLICITY /* it is permissible to try to feed a signal to the wrong loop */ /* or, likely more useful, feeding a signal nobody is waiting for */ if (expect_false (signals [signum].loop != EV_A)) return; #endif signals [signum].pending = 0; ECB_MEMORY_FENCE_RELEASE; for (w = signals [signum].head; w; w = w->next) ev_feed_event (EV_A_ (W)w, EV_SIGNAL); } #if EV_USE_SIGNALFD static void sigfdcb (EV_P_ ev_io *iow, int revents) { struct signalfd_siginfo si[2], *sip; /* these structs are big */ for (;;) { ssize_t res = read (sigfd, si, sizeof (si)); /* not ISO-C, as res might be -1, but works with SuS */ for (sip = si; (char *)sip < (char *)si + res; ++sip) ev_feed_signal_event (EV_A_ sip->ssi_signo); if (res < (ssize_t)sizeof (si)) break; } } #endif #endif /*****************************************************************************/ #if EV_CHILD_ENABLE static WL childs [EV_PID_HASHSIZE]; static ev_signal childev; #ifndef WIFCONTINUED # define WIFCONTINUED(status) 0 #endif /* handle a single child status event */ inline_speed void child_reap (EV_P_ int chain, int pid, int status) { ev_child *w; int traced = WIFSTOPPED (status) || WIFCONTINUED (status); for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next) { if ((w->pid == pid || !w->pid) && (!traced || (w->flags & 1))) { ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ w->rpid = pid; w->rstatus = status; ev_feed_event (EV_A_ (W)w, EV_CHILD); } } } #ifndef WCONTINUED # define WCONTINUED 0 #endif /* called on sigchld etc., calls waitpid */ static void childcb (EV_P_ ev_signal *sw, int revents) { int pid, status; /* some systems define WCONTINUED but then fail to support it (linux 2.4) */ if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) if (!WCONTINUED || errno != EINVAL || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) return; /* make sure we are called again until all children have been reaped */ /* we need to do it this way so that the callback gets called before we continue */ ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); child_reap (EV_A_ pid, pid, status); if ((EV_PID_HASHSIZE) > 1) child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ } #endif /*****************************************************************************/ #if EV_USE_IOCP # include "ev_iocp.c" #endif #if EV_USE_PORT # include "ev_port.c" #endif #if EV_USE_KQUEUE # include "ev_kqueue.c" #endif #if EV_USE_EPOLL # include "ev_epoll.c" #endif #if EV_USE_POLL # include "ev_poll.c" #endif #if EV_USE_SELECT # include "ev_select.c" #endif ecb_cold int ev_version_major (void) EV_THROW { return EV_VERSION_MAJOR; } ecb_cold int ev_version_minor (void) EV_THROW { return EV_VERSION_MINOR; } /* return true if we are running with elevated privileges and should ignore env variables */ inline_size ecb_cold int enable_secure (void) { #ifdef _WIN32 return 0; #else return getuid () != geteuid () || getgid () != getegid (); #endif } ecb_cold unsigned int ev_supported_backends (void) EV_THROW { unsigned int flags = 0; if (EV_USE_PORT ) flags |= EVBACKEND_PORT; if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; if (EV_USE_POLL ) flags |= EVBACKEND_POLL; if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; return flags; } ecb_cold unsigned int ev_recommended_backends (void) EV_THROW { unsigned int flags = ev_supported_backends (); #ifndef __NetBSD__ /* kqueue is borked on everything but netbsd apparently */ /* it usually doesn't work correctly on anything but sockets and pipes */ flags &= ~EVBACKEND_KQUEUE; #endif #ifdef __APPLE__ /* only select works correctly on that "unix-certified" platform */ flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ #endif #ifdef __FreeBSD__ flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */ #endif return flags; } ecb_cold unsigned int ev_embeddable_backends (void) EV_THROW { int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */ flags &= ~EVBACKEND_EPOLL; return flags; } unsigned int ev_backend (EV_P) EV_THROW { return backend; } #if EV_FEATURE_API unsigned int ev_iteration (EV_P) EV_THROW { return loop_count; } unsigned int ev_depth (EV_P) EV_THROW { return loop_depth; } void ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW { io_blocktime = interval; } void ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW { timeout_blocktime = interval; } void ev_set_userdata (EV_P_ void *data) EV_THROW { userdata = data; } void * ev_userdata (EV_P) EV_THROW { return userdata; } void ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW { invoke_cb = invoke_pending_cb; } void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW { release_cb = release; acquire_cb = acquire; } #endif /* initialise a loop structure, must be zero-initialised */ noinline ecb_cold static void loop_init (EV_P_ unsigned int flags) EV_THROW { if (!backend) { origflags = flags; #if EV_USE_REALTIME if (!have_realtime) { struct timespec ts; if (!clock_gettime (CLOCK_REALTIME, &ts)) have_realtime = 1; } #endif #if EV_USE_MONOTONIC if (!have_monotonic) { struct timespec ts; if (!clock_gettime (CLOCK_MONOTONIC, &ts)) have_monotonic = 1; } #endif /* pid check not overridable via env */ #ifndef _WIN32 if (flags & EVFLAG_FORKCHECK) curpid = getpid (); #endif if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) flags = atoi (getenv ("LIBEV_FLAGS")); ev_rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; rtmn_diff = ev_rt_now - mn_now; #if EV_FEATURE_API invoke_cb = ev_invoke_pending; #endif io_blocktime = 0.; timeout_blocktime = 0.; backend = 0; backend_fd = -1; sig_pending = 0; #if EV_ASYNC_ENABLE async_pending = 0; #endif pipe_write_skipped = 0; pipe_write_wanted = 0; evpipe [0] = -1; evpipe [1] = -1; #if EV_USE_INOTIFY fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2; #endif #if EV_USE_SIGNALFD sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1; #endif if (!(flags & EVBACKEND_MASK)) flags |= ev_recommended_backends (); #if EV_USE_IOCP if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags); #endif #if EV_USE_PORT if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); #endif #if EV_USE_KQUEUE if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); #endif #if EV_USE_EPOLL if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); #endif #if EV_USE_POLL if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); #endif #if EV_USE_SELECT if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); #endif ev_prepare_init (&pending_w, pendingcb); #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE ev_init (&pipe_w, pipecb); ev_set_priority (&pipe_w, EV_MAXPRI); #endif } } /* free up a loop structure */ ecb_cold void ev_loop_destroy (EV_P) { int i; #if EV_MULTIPLICITY /* mimic free (0) */ if (!EV_A) return; #endif #if EV_CLEANUP_ENABLE /* queue cleanup watchers (and execute them) */ if (expect_false (cleanupcnt)) { queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP); EV_INVOKE_PENDING; } #endif #if EV_CHILD_ENABLE if (ev_is_default_loop (EV_A) && ev_is_active (&childev)) { ev_ref (EV_A); /* child watcher */ ev_signal_stop (EV_A_ &childev); } #endif if (ev_is_active (&pipe_w)) { /*ev_ref (EV_A);*/ /*ev_io_stop (EV_A_ &pipe_w);*/ if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]); if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]); } #if EV_USE_SIGNALFD if (ev_is_active (&sigfd_w)) close (sigfd); #endif #if EV_USE_INOTIFY if (fs_fd >= 0) close (fs_fd); #endif if (backend_fd >= 0) close (backend_fd); #if EV_USE_IOCP if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A); #endif #if EV_USE_PORT if (backend == EVBACKEND_PORT ) port_destroy (EV_A); #endif #if EV_USE_KQUEUE if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); #endif #if EV_USE_EPOLL if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); #endif #if EV_USE_POLL if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); #endif #if EV_USE_SELECT if (backend == EVBACKEND_SELECT) select_destroy (EV_A); #endif for (i = NUMPRI; i--; ) { array_free (pending, [i]); #if EV_IDLE_ENABLE array_free (idle, [i]); #endif } ev_free (anfds); anfds = 0; anfdmax = 0; /* have to use the microsoft-never-gets-it-right macro */ array_free (rfeed, EMPTY); array_free (fdchange, EMPTY); array_free (timer, EMPTY); #if EV_PERIODIC_ENABLE array_free (periodic, EMPTY); #endif #if EV_FORK_ENABLE array_free (fork, EMPTY); #endif #if EV_CLEANUP_ENABLE array_free (cleanup, EMPTY); #endif array_free (prepare, EMPTY); array_free (check, EMPTY); #if EV_ASYNC_ENABLE array_free (async, EMPTY); #endif backend = 0; #if EV_MULTIPLICITY if (ev_is_default_loop (EV_A)) #endif ev_default_loop_ptr = 0; #if EV_MULTIPLICITY else ev_free (EV_A); #endif } #if EV_USE_INOTIFY inline_size void infy_fork (EV_P); #endif inline_size void loop_fork (EV_P) { #if EV_USE_PORT if (backend == EVBACKEND_PORT ) port_fork (EV_A); #endif #if EV_USE_KQUEUE if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); #endif #if EV_USE_EPOLL if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); #endif #if EV_USE_INOTIFY infy_fork (EV_A); #endif #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE if (ev_is_active (&pipe_w) && postfork != 2) { /* pipe_write_wanted must be false now, so modifying fd vars should be safe */ ev_ref (EV_A); ev_io_stop (EV_A_ &pipe_w); if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]); evpipe_init (EV_A); /* iterate over everything, in case we missed something before */ ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM); } #endif postfork = 0; } #if EV_MULTIPLICITY ecb_cold struct ev_loop * ev_loop_new (unsigned int flags) EV_THROW { EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); memset (EV_A, 0, sizeof (struct ev_loop)); loop_init (EV_A_ flags); if (ev_backend (EV_A)) return EV_A; ev_free (EV_A); return 0; } #endif /* multiplicity */ #if EV_VERIFY noinline ecb_cold static void verify_watcher (EV_P_ W w) { assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); if (w->pending) assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); } noinline ecb_cold static void verify_heap (EV_P_ ANHE *heap, int N) { int i; for (i = HEAP0; i < N + HEAP0; ++i) { assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); verify_watcher (EV_A_ (W)ANHE_w (heap [i])); } } noinline ecb_cold static void array_verify (EV_P_ W *ws, int cnt) { while (cnt--) { assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); verify_watcher (EV_A_ ws [cnt]); } } #endif #if EV_FEATURE_API void ecb_cold ev_verify (EV_P) EV_THROW { #if EV_VERIFY int i; WL w, w2; assert (activecnt >= -1); assert (fdchangemax >= fdchangecnt); for (i = 0; i < fdchangecnt; ++i) assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); assert (anfdmax >= 0); for (i = 0; i < anfdmax; ++i) { int j = 0; for (w = w2 = anfds [i].head; w; w = w->next) { verify_watcher (EV_A_ (W)w); if (j++ & 1) { assert (("libev: io watcher list contains a loop", w != w2)); w2 = w2->next; } assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); } } assert (timermax >= timercnt); verify_heap (EV_A_ timers, timercnt); #if EV_PERIODIC_ENABLE assert (periodicmax >= periodiccnt); verify_heap (EV_A_ periodics, periodiccnt); #endif for (i = NUMPRI; i--; ) { assert (pendingmax [i] >= pendingcnt [i]); #if EV_IDLE_ENABLE assert (idleall >= 0); assert (idlemax [i] >= idlecnt [i]); array_verify (EV_A_ (W *)idles [i], idlecnt [i]); #endif } #if EV_FORK_ENABLE assert (forkmax >= forkcnt); array_verify (EV_A_ (W *)forks, forkcnt); #endif #if EV_CLEANUP_ENABLE assert (cleanupmax >= cleanupcnt); array_verify (EV_A_ (W *)cleanups, cleanupcnt); #endif #if EV_ASYNC_ENABLE assert (asyncmax >= asynccnt); array_verify (EV_A_ (W *)asyncs, asynccnt); #endif #if EV_PREPARE_ENABLE assert (preparemax >= preparecnt); array_verify (EV_A_ (W *)prepares, preparecnt); #endif #if EV_CHECK_ENABLE assert (checkmax >= checkcnt); array_verify (EV_A_ (W *)checks, checkcnt); #endif # if 0 #if EV_CHILD_ENABLE for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next) for (signum = EV_NSIG; signum--; ) if (signals [signum].pending) #endif # endif #endif } #endif #if EV_MULTIPLICITY ecb_cold struct ev_loop * #else int #endif ev_default_loop (unsigned int flags) EV_THROW { if (!ev_default_loop_ptr) { #if EV_MULTIPLICITY EV_P = ev_default_loop_ptr = &default_loop_struct; #else ev_default_loop_ptr = 1; #endif loop_init (EV_A_ flags); if (ev_backend (EV_A)) { #if EV_CHILD_ENABLE ev_signal_init (&childev, childcb, SIGCHLD); ev_set_priority (&childev, EV_MAXPRI); ev_signal_start (EV_A_ &childev); ev_unref (EV_A); /* child watcher should not keep loop alive */ #endif } else ev_default_loop_ptr = 0; } return ev_default_loop_ptr; } void ev_loop_fork (EV_P) EV_THROW { postfork = 1; } /*****************************************************************************/ void ev_invoke (EV_P_ void *w, int revents) { EV_CB_INVOKE ((W)w, revents); } unsigned int ev_pending_count (EV_P) EV_THROW { int pri; unsigned int count = 0; for (pri = NUMPRI; pri--; ) count += pendingcnt [pri]; return count; } noinline void ev_invoke_pending (EV_P) { pendingpri = NUMPRI; while (pendingpri) /* pendingpri possibly gets modified in the inner loop */ { --pendingpri; while (pendingcnt [pendingpri]) { ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri]; p->w->pending = 0; EV_CB_INVOKE (p->w, p->events); EV_FREQUENT_CHECK; } } } #if EV_IDLE_ENABLE /* make idle watchers pending. this handles the "call-idle */ /* only when higher priorities are idle" logic */ inline_size void idle_reify (EV_P) { if (expect_false (idleall)) { int pri; for (pri = NUMPRI; pri--; ) { if (pendingcnt [pri]) break; if (idlecnt [pri]) { queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); break; } } } } #endif /* make timers pending */ inline_size void timers_reify (EV_P) { EV_FREQUENT_CHECK; if (timercnt && ANHE_at (timers [HEAP0]) < mn_now) { do { ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/ /* first reschedule or stop timer */ if (w->repeat) { ev_at (w) += w->repeat; if (ev_at (w) < mn_now) ev_at (w) = mn_now; assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); ANHE_at_cache (timers [HEAP0]); downheap (timers, timercnt, HEAP0); } else ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ EV_FREQUENT_CHECK; feed_reverse (EV_A_ (W)w); } while (timercnt && ANHE_at (timers [HEAP0]) < mn_now); feed_reverse_done (EV_A_ EV_TIMER); } } #if EV_PERIODIC_ENABLE noinline static void periodic_recalc (EV_P_ ev_periodic *w) { ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL; ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval); /* the above almost always errs on the low side */ while (at <= ev_rt_now) { ev_tstamp nat = at + w->interval; /* when resolution fails us, we use ev_rt_now */ if (expect_false (nat == at)) { at = ev_rt_now; break; } at = nat; } ev_at (w) = at; } /* make periodics pending */ inline_size void periodics_reify (EV_P) { EV_FREQUENT_CHECK; while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) { do { ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ /* first reschedule or stop timer */ if (w->reschedule_cb) { ev_at (w) = w->reschedule_cb (w, ev_rt_now); assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); ANHE_at_cache (periodics [HEAP0]); downheap (periodics, periodiccnt, HEAP0); } else if (w->interval) { periodic_recalc (EV_A_ w); ANHE_at_cache (periodics [HEAP0]); downheap (periodics, periodiccnt, HEAP0); } else ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ EV_FREQUENT_CHECK; feed_reverse (EV_A_ (W)w); } while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now); feed_reverse_done (EV_A_ EV_PERIODIC); } } /* simply recalculate all periodics */ /* TODO: maybe ensure that at least one event happens when jumping forward? */ noinline ecb_cold static void periodics_reschedule (EV_P) { int i; /* adjust periodics after time jump */ for (i = HEAP0; i < periodiccnt + HEAP0; ++i) { ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); if (w->reschedule_cb) ev_at (w) = w->reschedule_cb (w, ev_rt_now); else if (w->interval) periodic_recalc (EV_A_ w); ANHE_at_cache (periodics [i]); } reheap (periodics, periodiccnt); } #endif /* adjust all timers by a given offset */ noinline ecb_cold static void timers_reschedule (EV_P_ ev_tstamp adjust) { int i; for (i = 0; i < timercnt; ++i) { ANHE *he = timers + i + HEAP0; ANHE_w (*he)->at += adjust; ANHE_at_cache (*he); } } /* fetch new monotonic and realtime times from the kernel */ /* also detect if there was a timejump, and act accordingly */ inline_speed void time_update (EV_P_ ev_tstamp max_block) { #if EV_USE_MONOTONIC if (expect_true (have_monotonic)) { int i; ev_tstamp odiff = rtmn_diff; mn_now = get_clock (); /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ /* interpolate in the meantime */ if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) { ev_rt_now = rtmn_diff + mn_now; return; } now_floor = mn_now; ev_rt_now = ev_time (); /* loop a few times, before making important decisions. * on the choice of "4": one iteration isn't enough, * in case we get preempted during the calls to * ev_time and get_clock. a second call is almost guaranteed * to succeed in that case, though. and looping a few more times * doesn't hurt either as we only do this on time-jumps or * in the unlikely event of having been preempted here. */ for (i = 4; --i; ) { ev_tstamp diff; rtmn_diff = ev_rt_now - mn_now; diff = odiff - rtmn_diff; if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP)) return; /* all is well */ ev_rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; } /* no timer adjustment, as the monotonic clock doesn't jump */ /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ # if EV_PERIODIC_ENABLE periodics_reschedule (EV_A); # endif } else #endif { ev_rt_now = ev_time (); if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) { /* adjust timers. this is easy, as the offset is the same for all of them */ timers_reschedule (EV_A_ ev_rt_now - mn_now); #if EV_PERIODIC_ENABLE periodics_reschedule (EV_A); #endif } mn_now = ev_rt_now; } } /* ########## COOLIO PATCHERY HO! ########## */ #if defined(HAVE_RB_THREAD_BLOCKING_REGION) || defined(HAVE_RB_THREAD_CALL_WITHOUT_GVL) struct ev_poll_args { struct ev_loop *loop; ev_tstamp waittime; }; static VALUE ev_backend_poll(void *ptr) { struct ev_poll_args *args = (struct ev_poll_args *)ptr; struct ev_loop *loop = args->loop; backend_poll (EV_A_ args->waittime); return Qnil; } #endif /* ######################################## */ int ev_run (EV_P_ int flags) { /* ########## COOLIO PATCHERY HO! ########## */ #if defined(HAVE_RB_THREAD_BLOCKING_REGION) || defined(HAVE_RB_THREAD_CALL_WITHOUT_GVL) struct ev_poll_args poll_args; #endif /* ######################################## */ #if EV_FEATURE_API ++loop_depth; #endif assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE)); loop_done = EVBREAK_CANCEL; EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */ do { #if EV_VERIFY >= 2 ev_verify (EV_A); #endif #ifndef _WIN32 if (expect_false (curpid)) /* penalise the forking check even more */ if (expect_false (getpid () != curpid)) { curpid = getpid (); postfork = 1; } #endif #if EV_FORK_ENABLE /* we might have forked, so queue fork handlers */ if (expect_false (postfork)) if (forkcnt) { queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); EV_INVOKE_PENDING; } #endif #if EV_PREPARE_ENABLE /* queue prepare watchers (and execute them) */ if (expect_false (preparecnt)) { queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); EV_INVOKE_PENDING; } #endif if (expect_false (loop_done)) break; /* we might have forked, so reify kernel state if necessary */ if (expect_false (postfork)) loop_fork (EV_A); /* update fd-related kernel structures */ fd_reify (EV_A); /* calculate blocking time */ { ev_tstamp waittime = 0.; ev_tstamp sleeptime = 0.; /* remember old timestamp for io_blocktime calculation */ ev_tstamp prev_mn_now = mn_now; /* update time to cancel out callback processing overhead */ time_update (EV_A_ 1e100); /* from now on, we want a pipe-wake-up */ pipe_write_wanted = 1; ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */ if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped))) { waittime = MAX_BLOCKTIME; if (timercnt) { ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now; if (waittime > to) waittime = to; } #if EV_PERIODIC_ENABLE if (periodiccnt) { ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now; if (waittime > to) waittime = to; } #endif /* don't let timeouts decrease the waittime below timeout_blocktime */ if (expect_false (waittime < timeout_blocktime)) waittime = timeout_blocktime; /* at this point, we NEED to wait, so we have to ensure */ /* to pass a minimum nonzero value to the backend */ if (expect_false (waittime < backend_mintime)) waittime = backend_mintime; /* extra check because io_blocktime is commonly 0 */ if (expect_false (io_blocktime)) { sleeptime = io_blocktime - (mn_now - prev_mn_now); if (sleeptime > waittime - backend_mintime) sleeptime = waittime - backend_mintime; if (expect_true (sleeptime > 0.)) { ev_sleep (sleeptime); waittime -= sleeptime; } } } #if EV_FEATURE_API ++loop_count; #endif assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */ /* ########################## COOLIO PATCHERY HO! ########################## According to the grandwizards of Ruby, locking and unlocking of the global interpreter lock are apparently too powerful a concept for a mere mortal to wield (although redefining what + and - do to numbers is totally cool). And so it came to pass that the only acceptable way to release the global interpreter lock is through a convoluted callback system that thakes a function pointer. While the grandwizard of libev foresaw this sort of scenario, he too attempted to place an API with callbacks on it, one that runs before the system call, and one that runs immediately after. And so it came to pass that trying to wrap everything up in callbacks created two incompatible APIs, Ruby's which releases the global interpreter lock and reacquires it when the callback returns, and libev's, which wants two callbacks, one which runs before the polling operation starts, and one which runs after it finishes. These two systems are incompatible as they both want to use callbacks to solve the same problem, however libev wants to use before/after callbacks, and Ruby wants to use an "around" callback. This presents a significant problem as these two patterns of callbacks are diametrical opposites of each other and thus cannot be composed. And thus we are left with no choice but to patch the internals of libev in order to release a mutex at just the precise moment. This is a great example of a situation where granular locking and unlocking of the GVL is practically required. The goal is to get as close to the system call as possible, and to keep the GVL unlocked for the shortest amount of time possible. Perhaps Ruby could benefit from such an API, e.g: rb_thread_unsafe_dangerous_crazy_blocking_region_begin(...); rb_thread_unsafe_dangerous_crazy_blocking_region_end(...); ####################################################################### */ /* simulate to rb_thread_call_without_gvl using rb_theread_blocking_region. https://github.com/brianmario/mysql2/blob/master/ext/mysql2/client.h#L8 */ #ifndef HAVE_RB_THREAD_CALL_WITHOUT_GVL #ifdef HAVE_RB_THREAD_BLOCKING_REGION #define rb_thread_call_without_gvl(func, data1, ubf, data2) \ rb_thread_blocking_region((rb_blocking_function_t *)func, data1, ubf, data2) #endif #endif #if defined(HAVE_RB_THREAD_BLOCKING_REGION) || defined(HAVE_RB_THREAD_CALL_WITHOUT_GVL) poll_args.loop = loop; poll_args.waittime = waittime; rb_thread_call_without_gvl(ev_backend_poll, (void *)&poll_args, RUBY_UBF_IO, 0); #else backend_poll (EV_A_ waittime); #endif /* ############################# END PATCHERY ############################ */ assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */ pipe_write_wanted = 0; /* just an optimisation, no fence needed */ ECB_MEMORY_FENCE_ACQUIRE; if (pipe_write_skipped) { assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w))); ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM); } /* update ev_rt_now, do magic */ time_update (EV_A_ waittime + sleeptime); } /* queue pending timers and reschedule them */ timers_reify (EV_A); /* relative timers called last */ #if EV_PERIODIC_ENABLE periodics_reify (EV_A); /* absolute timers called first */ #endif #if EV_IDLE_ENABLE /* queue idle watchers unless other events are pending */ idle_reify (EV_A); #endif #if EV_CHECK_ENABLE /* queue check watchers, to be executed first */ if (expect_false (checkcnt)) queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); #endif EV_INVOKE_PENDING; } while (expect_true ( activecnt && !loop_done && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT)) )); if (loop_done == EVBREAK_ONE) loop_done = EVBREAK_CANCEL; #if EV_FEATURE_API --loop_depth; #endif return activecnt; } void ev_break (EV_P_ int how) EV_THROW { loop_done = how; } void ev_ref (EV_P) EV_THROW { ++activecnt; } void ev_unref (EV_P) EV_THROW { --activecnt; } void ev_now_update (EV_P) EV_THROW { time_update (EV_A_ 1e100); } void ev_suspend (EV_P) EV_THROW { ev_now_update (EV_A); } void ev_resume (EV_P) EV_THROW { ev_tstamp mn_prev = mn_now; ev_now_update (EV_A); timers_reschedule (EV_A_ mn_now - mn_prev); #if EV_PERIODIC_ENABLE /* TODO: really do this? */ periodics_reschedule (EV_A); #endif } /*****************************************************************************/ /* singly-linked list management, used when the expected list length is short */ inline_size void wlist_add (WL *head, WL elem) { elem->next = *head; *head = elem; } inline_size void wlist_del (WL *head, WL elem) { while (*head) { if (expect_true (*head == elem)) { *head = elem->next; break; } head = &(*head)->next; } } /* internal, faster, version of ev_clear_pending */ inline_speed void clear_pending (EV_P_ W w) { if (w->pending) { pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w; w->pending = 0; } } int ev_clear_pending (EV_P_ void *w) EV_THROW { W w_ = (W)w; int pending = w_->pending; if (expect_true (pending)) { ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; p->w = (W)&pending_w; w_->pending = 0; return p->events; } else return 0; } inline_size void pri_adjust (EV_P_ W w) { int pri = ev_priority (w); pri = pri < EV_MINPRI ? EV_MINPRI : pri; pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; ev_set_priority (w, pri); } inline_speed void ev_start (EV_P_ W w, int active) { pri_adjust (EV_A_ w); w->active = active; ev_ref (EV_A); } inline_size void ev_stop (EV_P_ W w) { ev_unref (EV_A); w->active = 0; } /*****************************************************************************/ noinline void ev_io_start (EV_P_ ev_io *w) EV_THROW { int fd = w->fd; if (expect_false (ev_is_active (w))) return; assert (("libev: ev_io_start called with negative fd", fd >= 0)); assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, 1); array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); wlist_add (&anfds[fd].head, (WL)w); /* common bug, apparently */ assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w)); fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY); w->events &= ~EV__IOFDSET; EV_FREQUENT_CHECK; } noinline void ev_io_stop (EV_P_ ev_io *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); EV_FREQUENT_CHECK; wlist_del (&anfds[w->fd].head, (WL)w); ev_stop (EV_A_ (W)w); fd_change (EV_A_ w->fd, EV_ANFD_REIFY); EV_FREQUENT_CHECK; } noinline void ev_timer_start (EV_P_ ev_timer *w) EV_THROW { if (expect_false (ev_is_active (w))) return; ev_at (w) += mn_now; assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); EV_FREQUENT_CHECK; ++timercnt; ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); ANHE_w (timers [ev_active (w)]) = (WT)w; ANHE_at_cache (timers [ev_active (w)]); upheap (timers, ev_active (w)); EV_FREQUENT_CHECK; /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ } noinline void ev_timer_stop (EV_P_ ev_timer *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); --timercnt; if (expect_true (active < timercnt + HEAP0)) { timers [active] = timers [timercnt + HEAP0]; adjustheap (timers, timercnt, active); } } ev_at (w) -= mn_now; ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } noinline void ev_timer_again (EV_P_ ev_timer *w) EV_THROW { EV_FREQUENT_CHECK; clear_pending (EV_A_ (W)w); if (ev_is_active (w)) { if (w->repeat) { ev_at (w) = mn_now + w->repeat; ANHE_at_cache (timers [ev_active (w)]); adjustheap (timers, timercnt, ev_active (w)); } else ev_timer_stop (EV_A_ w); } else if (w->repeat) { ev_at (w) = w->repeat; ev_timer_start (EV_A_ w); } EV_FREQUENT_CHECK; } ev_tstamp ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW { return ev_at (w) - (ev_is_active (w) ? mn_now : 0.); } #if EV_PERIODIC_ENABLE noinline void ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW { if (expect_false (ev_is_active (w))) return; if (w->reschedule_cb) ev_at (w) = w->reschedule_cb (w, ev_rt_now); else if (w->interval) { assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); periodic_recalc (EV_A_ w); } else ev_at (w) = w->offset; EV_FREQUENT_CHECK; ++periodiccnt; ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); ANHE_w (periodics [ev_active (w)]) = (WT)w; ANHE_at_cache (periodics [ev_active (w)]); upheap (periodics, ev_active (w)); EV_FREQUENT_CHECK; /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ } noinline void ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); --periodiccnt; if (expect_true (active < periodiccnt + HEAP0)) { periodics [active] = periodics [periodiccnt + HEAP0]; adjustheap (periodics, periodiccnt, active); } } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } noinline void ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW { /* TODO: use adjustheap and recalculation */ ev_periodic_stop (EV_A_ w); ev_periodic_start (EV_A_ w); } #endif #ifndef SA_RESTART # define SA_RESTART 0 #endif #if EV_SIGNAL_ENABLE noinline void ev_signal_start (EV_P_ ev_signal *w) EV_THROW { if (expect_false (ev_is_active (w))) return; assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG)); #if EV_MULTIPLICITY assert (("libev: a signal must not be attached to two different loops", !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop)); signals [w->signum - 1].loop = EV_A; ECB_MEMORY_FENCE_RELEASE; #endif EV_FREQUENT_CHECK; #if EV_USE_SIGNALFD if (sigfd == -2) { sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC); if (sigfd < 0 && errno == EINVAL) sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */ if (sigfd >= 0) { fd_intern (sigfd); /* doing it twice will not hurt */ sigemptyset (&sigfd_set); ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ); ev_set_priority (&sigfd_w, EV_MAXPRI); ev_io_start (EV_A_ &sigfd_w); ev_unref (EV_A); /* signalfd watcher should not keep loop alive */ } } if (sigfd >= 0) { /* TODO: check .head */ sigaddset (&sigfd_set, w->signum); sigprocmask (SIG_BLOCK, &sigfd_set, 0); signalfd (sigfd, &sigfd_set, 0); } #endif ev_start (EV_A_ (W)w, 1); wlist_add (&signals [w->signum - 1].head, (WL)w); if (!((WL)w)->next) # if EV_USE_SIGNALFD if (sigfd < 0) /*TODO*/ # endif { # ifdef _WIN32 evpipe_init (EV_A); signal (w->signum, ev_sighandler); # else struct sigaction sa; evpipe_init (EV_A); sa.sa_handler = ev_sighandler; sigfillset (&sa.sa_mask); sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ sigaction (w->signum, &sa, 0); if (origflags & EVFLAG_NOSIGMASK) { sigemptyset (&sa.sa_mask); sigaddset (&sa.sa_mask, w->signum); sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0); } #endif } EV_FREQUENT_CHECK; } noinline void ev_signal_stop (EV_P_ ev_signal *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; wlist_del (&signals [w->signum - 1].head, (WL)w); ev_stop (EV_A_ (W)w); if (!signals [w->signum - 1].head) { #if EV_MULTIPLICITY signals [w->signum - 1].loop = 0; /* unattach from signal */ #endif #if EV_USE_SIGNALFD if (sigfd >= 0) { sigset_t ss; sigemptyset (&ss); sigaddset (&ss, w->signum); sigdelset (&sigfd_set, w->signum); signalfd (sigfd, &sigfd_set, 0); sigprocmask (SIG_UNBLOCK, &ss, 0); } else #endif signal (w->signum, SIG_DFL); } EV_FREQUENT_CHECK; } #endif #if EV_CHILD_ENABLE void ev_child_start (EV_P_ ev_child *w) EV_THROW { #if EV_MULTIPLICITY assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); #endif if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, 1); wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w); EV_FREQUENT_CHECK; } void ev_child_stop (EV_P_ ev_child *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w); ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_STAT_ENABLE # ifdef _WIN32 # undef lstat # define lstat(a,b) _stati64 (a,b) # endif #define DEF_STAT_INTERVAL 5.0074891 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ #define MIN_STAT_INTERVAL 0.1074891 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents); #if EV_USE_INOTIFY /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */ # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX) noinline static void infy_add (EV_P_ ev_stat *w) { w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO | IN_DONT_FOLLOW | IN_MASK_ADD); if (w->wd >= 0) { struct statfs sfs; /* now local changes will be tracked by inotify, but remote changes won't */ /* unless the filesystem is known to be local, we therefore still poll */ /* also do poll on <2.6.25, but with normal frequency */ if (!fs_2625) w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; else if (!statfs (w->path, &sfs) && (sfs.f_type == 0x1373 /* devfs */ || sfs.f_type == 0x4006 /* fat */ || sfs.f_type == 0x4d44 /* msdos */ || sfs.f_type == 0xEF53 /* ext2/3 */ || sfs.f_type == 0x72b6 /* jffs2 */ || sfs.f_type == 0x858458f6 /* ramfs */ || sfs.f_type == 0x5346544e /* ntfs */ || sfs.f_type == 0x3153464a /* jfs */ || sfs.f_type == 0x9123683e /* btrfs */ || sfs.f_type == 0x52654973 /* reiser3 */ || sfs.f_type == 0x01021994 /* tmpfs */ || sfs.f_type == 0x58465342 /* xfs */)) w->timer.repeat = 0.; /* filesystem is local, kernel new enough */ else w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */ } else { /* can't use inotify, continue to stat */ w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; /* if path is not there, monitor some parent directory for speedup hints */ /* note that exceeding the hardcoded path limit is not a correctness issue, */ /* but an efficiency issue only */ if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) { char path [4096]; strcpy (path, w->path); do { int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); char *pend = strrchr (path, '/'); if (!pend || pend == path) break; *pend = 0; w->wd = inotify_add_watch (fs_fd, path, mask); } while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); } } if (w->wd >= 0) wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w); /* now re-arm timer, if required */ if (ev_is_active (&w->timer)) ev_ref (EV_A); ev_timer_again (EV_A_ &w->timer); if (ev_is_active (&w->timer)) ev_unref (EV_A); } noinline static void infy_del (EV_P_ ev_stat *w) { int slot; int wd = w->wd; if (wd < 0) return; w->wd = -2; slot = wd & ((EV_INOTIFY_HASHSIZE) - 1); wlist_del (&fs_hash [slot].head, (WL)w); /* remove this watcher, if others are watching it, they will rearm */ inotify_rm_watch (fs_fd, wd); } noinline static void infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) { if (slot < 0) /* overflow, need to check for all hash slots */ for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot) infy_wd (EV_A_ slot, wd, ev); else { WL w_; for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; ) { ev_stat *w = (ev_stat *)w_; w_ = w_->next; /* lets us remove this watcher and all before it */ if (w->wd == wd || wd == -1) { if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) { wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w); w->wd = -1; infy_add (EV_A_ w); /* re-add, no matter what */ } stat_timer_cb (EV_A_ &w->timer, 0); } } } } static void infy_cb (EV_P_ ev_io *w, int revents) { char buf [EV_INOTIFY_BUFSIZE]; int ofs; int len = read (fs_fd, buf, sizeof (buf)); for (ofs = 0; ofs < len; ) { struct inotify_event *ev = (struct inotify_event *)(buf + ofs); infy_wd (EV_A_ ev->wd, ev->wd, ev); ofs += sizeof (struct inotify_event) + ev->len; } } inline_size ecb_cold void ev_check_2625 (EV_P) { /* kernels < 2.6.25 are borked * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html */ if (ev_linux_version () < 0x020619) return; fs_2625 = 1; } inline_size int infy_newfd (void) { #if defined IN_CLOEXEC && defined IN_NONBLOCK int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK); if (fd >= 0) return fd; #endif return inotify_init (); } inline_size void infy_init (EV_P) { if (fs_fd != -2) return; fs_fd = -1; ev_check_2625 (EV_A); fs_fd = infy_newfd (); if (fs_fd >= 0) { fd_intern (fs_fd); ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); ev_set_priority (&fs_w, EV_MAXPRI); ev_io_start (EV_A_ &fs_w); ev_unref (EV_A); } } inline_size void infy_fork (EV_P) { int slot; if (fs_fd < 0) return; ev_ref (EV_A); ev_io_stop (EV_A_ &fs_w); close (fs_fd); fs_fd = infy_newfd (); if (fs_fd >= 0) { fd_intern (fs_fd); ev_io_set (&fs_w, fs_fd, EV_READ); ev_io_start (EV_A_ &fs_w); ev_unref (EV_A); } for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot) { WL w_ = fs_hash [slot].head; fs_hash [slot].head = 0; while (w_) { ev_stat *w = (ev_stat *)w_; w_ = w_->next; /* lets us add this watcher */ w->wd = -1; if (fs_fd >= 0) infy_add (EV_A_ w); /* re-add, no matter what */ else { w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; if (ev_is_active (&w->timer)) ev_ref (EV_A); ev_timer_again (EV_A_ &w->timer); if (ev_is_active (&w->timer)) ev_unref (EV_A); } } } } #endif #ifdef _WIN32 # define EV_LSTAT(p,b) _stati64 (p, b) #else # define EV_LSTAT(p,b) lstat (p, b) #endif void ev_stat_stat (EV_P_ ev_stat *w) EV_THROW { if (lstat (w->path, &w->attr) < 0) w->attr.st_nlink = 0; else if (!w->attr.st_nlink) w->attr.st_nlink = 1; } noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents) { ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); ev_statdata prev = w->attr; ev_stat_stat (EV_A_ w); /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ if ( prev.st_dev != w->attr.st_dev || prev.st_ino != w->attr.st_ino || prev.st_mode != w->attr.st_mode || prev.st_nlink != w->attr.st_nlink || prev.st_uid != w->attr.st_uid || prev.st_gid != w->attr.st_gid || prev.st_rdev != w->attr.st_rdev || prev.st_size != w->attr.st_size || prev.st_atime != w->attr.st_atime || prev.st_mtime != w->attr.st_mtime || prev.st_ctime != w->attr.st_ctime ) { /* we only update w->prev on actual differences */ /* in case we test more often than invoke the callback, */ /* to ensure that prev is always different to attr */ w->prev = prev; #if EV_USE_INOTIFY if (fs_fd >= 0) { infy_del (EV_A_ w); infy_add (EV_A_ w); ev_stat_stat (EV_A_ w); /* avoid race... */ } #endif ev_feed_event (EV_A_ w, EV_STAT); } } void ev_stat_start (EV_P_ ev_stat *w) EV_THROW { if (expect_false (ev_is_active (w))) return; ev_stat_stat (EV_A_ w); if (w->interval < MIN_STAT_INTERVAL && w->interval) w->interval = MIN_STAT_INTERVAL; ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL); ev_set_priority (&w->timer, ev_priority (w)); #if EV_USE_INOTIFY infy_init (EV_A); if (fs_fd >= 0) infy_add (EV_A_ w); else #endif { ev_timer_again (EV_A_ &w->timer); ev_unref (EV_A); } ev_start (EV_A_ (W)w, 1); EV_FREQUENT_CHECK; } void ev_stat_stop (EV_P_ ev_stat *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; #if EV_USE_INOTIFY infy_del (EV_A_ w); #endif if (ev_is_active (&w->timer)) { ev_ref (EV_A); ev_timer_stop (EV_A_ &w->timer); } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_IDLE_ENABLE void ev_idle_start (EV_P_ ev_idle *w) EV_THROW { if (expect_false (ev_is_active (w))) return; pri_adjust (EV_A_ (W)w); EV_FREQUENT_CHECK; { int active = ++idlecnt [ABSPRI (w)]; ++idleall; ev_start (EV_A_ (W)w, active); array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); idles [ABSPRI (w)][active - 1] = w; } EV_FREQUENT_CHECK; } void ev_idle_stop (EV_P_ ev_idle *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; ev_active (idles [ABSPRI (w)][active - 1]) = active; ev_stop (EV_A_ (W)w); --idleall; } EV_FREQUENT_CHECK; } #endif #if EV_PREPARE_ENABLE void ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++preparecnt); array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); prepares [preparecnt - 1] = w; EV_FREQUENT_CHECK; } void ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); prepares [active - 1] = prepares [--preparecnt]; ev_active (prepares [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_CHECK_ENABLE void ev_check_start (EV_P_ ev_check *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++checkcnt); array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); checks [checkcnt - 1] = w; EV_FREQUENT_CHECK; } void ev_check_stop (EV_P_ ev_check *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); checks [active - 1] = checks [--checkcnt]; ev_active (checks [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_EMBED_ENABLE noinline void ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW { ev_run (w->other, EVRUN_NOWAIT); } static void embed_io_cb (EV_P_ ev_io *io, int revents) { ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); if (ev_cb (w)) ev_feed_event (EV_A_ (W)w, EV_EMBED); else ev_run (w->other, EVRUN_NOWAIT); } static void embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) { ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); { EV_P = w->other; while (fdchangecnt) { fd_reify (EV_A); ev_run (EV_A_ EVRUN_NOWAIT); } } } static void embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) { ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); ev_embed_stop (EV_A_ w); { EV_P = w->other; ev_loop_fork (EV_A); ev_run (EV_A_ EVRUN_NOWAIT); } ev_embed_start (EV_A_ w); } #if 0 static void embed_idle_cb (EV_P_ ev_idle *idle, int revents) { ev_idle_stop (EV_A_ idle); } #endif void ev_embed_start (EV_P_ ev_embed *w) EV_THROW { if (expect_false (ev_is_active (w))) return; { EV_P = w->other; assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); } EV_FREQUENT_CHECK; ev_set_priority (&w->io, ev_priority (w)); ev_io_start (EV_A_ &w->io); ev_prepare_init (&w->prepare, embed_prepare_cb); ev_set_priority (&w->prepare, EV_MINPRI); ev_prepare_start (EV_A_ &w->prepare); ev_fork_init (&w->fork, embed_fork_cb); ev_fork_start (EV_A_ &w->fork); /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ ev_start (EV_A_ (W)w, 1); EV_FREQUENT_CHECK; } void ev_embed_stop (EV_P_ ev_embed *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_io_stop (EV_A_ &w->io); ev_prepare_stop (EV_A_ &w->prepare); ev_fork_stop (EV_A_ &w->fork); ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_FORK_ENABLE void ev_fork_start (EV_P_ ev_fork *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++forkcnt); array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); forks [forkcnt - 1] = w; EV_FREQUENT_CHECK; } void ev_fork_stop (EV_P_ ev_fork *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); forks [active - 1] = forks [--forkcnt]; ev_active (forks [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_CLEANUP_ENABLE void ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW { if (expect_false (ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++cleanupcnt); array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2); cleanups [cleanupcnt - 1] = w; /* cleanup watchers should never keep a refcount on the loop */ ev_unref (EV_A); EV_FREQUENT_CHECK; } void ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; ev_ref (EV_A); { int active = ev_active (w); cleanups [active - 1] = cleanups [--cleanupcnt]; ev_active (cleanups [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } #endif #if EV_ASYNC_ENABLE void ev_async_start (EV_P_ ev_async *w) EV_THROW { if (expect_false (ev_is_active (w))) return; w->sent = 0; evpipe_init (EV_A); EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++asynccnt); array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); asyncs [asynccnt - 1] = w; EV_FREQUENT_CHECK; } void ev_async_stop (EV_P_ ev_async *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return; EV_FREQUENT_CHECK; { int active = ev_active (w); asyncs [active - 1] = asyncs [--asynccnt]; ev_active (asyncs [active - 1]) = active; } ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK; } void ev_async_send (EV_P_ ev_async *w) EV_THROW { w->sent = 1; evpipe_write (EV_A_ &async_pending); } #endif /*****************************************************************************/ struct ev_once { ev_io io; ev_timer to; void (*cb)(int revents, void *arg); void *arg; }; static void once_cb (EV_P_ struct ev_once *once, int revents) { void (*cb)(int revents, void *arg) = once->cb; void *arg = once->arg; ev_io_stop (EV_A_ &once->io); ev_timer_stop (EV_A_ &once->to); ev_free (once); cb (revents, arg); } static void once_cb_io (EV_P_ ev_io *w, int revents) { struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)); once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to)); } static void once_cb_to (EV_P_ ev_timer *w, int revents) { struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)); once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); } void ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW { struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); if (expect_false (!once)) { cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg); return; } once->cb = cb; once->arg = arg; ev_init (&once->io, once_cb_io); if (fd >= 0) { ev_io_set (&once->io, fd, events); ev_io_start (EV_A_ &once->io); } ev_init (&once->to, once_cb_to); if (timeout >= 0.) { ev_timer_set (&once->to, timeout, 0.); ev_timer_start (EV_A_ &once->to); } } /*****************************************************************************/ #if EV_WALK_ENABLE ecb_cold void ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW { int i, j; ev_watcher_list *wl, *wn; if (types & (EV_IO | EV_EMBED)) for (i = 0; i < anfdmax; ++i) for (wl = anfds [i].head; wl; ) { wn = wl->next; #if EV_EMBED_ENABLE if (ev_cb ((ev_io *)wl) == embed_io_cb) { if (types & EV_EMBED) cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io)); } else #endif #if EV_USE_INOTIFY if (ev_cb ((ev_io *)wl) == infy_cb) ; else #endif if ((ev_io *)wl != &pipe_w) if (types & EV_IO) cb (EV_A_ EV_IO, wl); wl = wn; } if (types & (EV_TIMER | EV_STAT)) for (i = timercnt + HEAP0; i-- > HEAP0; ) #if EV_STAT_ENABLE /*TODO: timer is not always active*/ if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb) { if (types & EV_STAT) cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer)); } else #endif if (types & EV_TIMER) cb (EV_A_ EV_TIMER, ANHE_w (timers [i])); #if EV_PERIODIC_ENABLE if (types & EV_PERIODIC) for (i = periodiccnt + HEAP0; i-- > HEAP0; ) cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); #endif #if EV_IDLE_ENABLE if (types & EV_IDLE) for (j = NUMPRI; j--; ) for (i = idlecnt [j]; i--; ) cb (EV_A_ EV_IDLE, idles [j][i]); #endif #if EV_FORK_ENABLE if (types & EV_FORK) for (i = forkcnt; i--; ) if (ev_cb (forks [i]) != embed_fork_cb) cb (EV_A_ EV_FORK, forks [i]); #endif #if EV_ASYNC_ENABLE if (types & EV_ASYNC) for (i = asynccnt; i--; ) cb (EV_A_ EV_ASYNC, asyncs [i]); #endif #if EV_PREPARE_ENABLE if (types & EV_PREPARE) for (i = preparecnt; i--; ) # if EV_EMBED_ENABLE if (ev_cb (prepares [i]) != embed_prepare_cb) # endif cb (EV_A_ EV_PREPARE, prepares [i]); #endif #if EV_CHECK_ENABLE if (types & EV_CHECK) for (i = checkcnt; i--; ) cb (EV_A_ EV_CHECK, checks [i]); #endif #if EV_SIGNAL_ENABLE if (types & EV_SIGNAL) for (i = 0; i < EV_NSIG - 1; ++i) for (wl = signals [i].head; wl; ) { wn = wl->next; cb (EV_A_ EV_SIGNAL, wl); wl = wn; } #endif #if EV_CHILD_ENABLE if (types & EV_CHILD) for (i = (EV_PID_HASHSIZE); i--; ) for (wl = childs [i]; wl; ) { wn = wl->next; cb (EV_A_ EV_CHILD, wl); wl = wn; } #endif /* EV_STAT 0x00001000 /* stat data changed */ /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ } #endif #if EV_MULTIPLICITY #include "ev_wrap.h" #endif