D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
opt
/
alt
/
python27
/
lib64
/
python2.7
/
site-packages
/
matplotlib
/
backends
/
Filename :
backend_emf.py
back
Copy
""" Enhanced Metafile backend. See http://pyemf.sourceforge.net for the EMF driver library. """ from __future__ import division try: import pyemf except ImportError: raise ImportError('You must first install pyemf from http://pyemf.sf.net') import os,sys,math,re from matplotlib import verbose, __version__, rcParams from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase from matplotlib.figure import Figure from matplotlib.transforms import Bbox from matplotlib.font_manager import findfont, FontProperties from matplotlib.ft2font import FT2Font, KERNING_UNFITTED, KERNING_DEFAULT, KERNING_UNSCALED from matplotlib.path import Path from matplotlib.transforms import Affine2D from matplotlib.mlab import quad2cubic # Font handling stuff snarfed from backend_ps, but only using TTF fonts _fontd = {} # Debug print stuff debugHandle = False debugPrint = False debugText = False # Hashable font properties class. In EMF, angle of rotation is a part # of the font properties, so a handle to a new font must be obtained # if the rotation changes. class EMFFontProperties(FontProperties): def __init__(self,other,angle): FontProperties.__init__(self,other.get_family(), other.get_style(), other.get_variant(), other.get_weight(), other.get_stretch(), other.get_size()) self._angle=angle def __hash__(self): return hash( (FontProperties.__hash__(self), self._angle)) def __str__(self): return str( (FontProperties.__str__(self), self._angle)) def set_angle(self,angle): self._angle=angle def get_angle(self): return self._angle # Hashable pen (line style) properties. class EMFPen: def __init__(self,emf,gc): self.emf=emf self.gc=gc r,g,b=gc.get_rgb() self.r=int(r*255) self.g=int(g*255) self.b=int(b*255) self.width=int(gc.get_linewidth()) self.style=0 self.set_linestyle() if debugHandle: print "EMFPen: style=%d width=%d rgb=(%d,%d,%d)" % (self.style,self.width,self.r,self.g,self.b) def __hash__(self): return hash((self.style,self.width,self.r,self.g,self.b)) def set_linestyle(self): # Hack. Negative width lines will not get drawn. if self.width<0: self.style=pyemf.PS_NULL else: styles={'solid':pyemf.PS_SOLID, 'dashed':pyemf.PS_DASH, 'dashdot':pyemf.PS_DASHDOT, 'dotted':pyemf.PS_DOT} #style=styles.get(self.gc.get_linestyle('solid')) style=self.gc.get_linestyle('solid') if debugHandle: print "EMFPen: style=%s" % style if style in styles: self.style=styles[style] else: self.style=pyemf.PS_SOLID def get_handle(self): handle=self.emf.CreatePen(self.style,self.width,(self.r,self.g,self.b)) return handle # Hashable brush (fill style) properties. class EMFBrush: def __init__(self,emf,rgb): self.emf=emf r,g,b=rgb self.r=int(r*255) self.g=int(g*255) self.b=int(b*255) if debugHandle: print "EMFBrush: rgb=(%d,%d,%d)" % (self.r,self.g,self.b) def __hash__(self): return hash((self.r,self.g,self.b)) def get_handle(self): handle=self.emf.CreateSolidBrush((self.r,self.g,self.b)) return handle class RendererEMF(RendererBase): """ The renderer handles drawing/rendering operations through a pyemf.EMF instance. """ fontweights = { 100 : pyemf.FW_NORMAL, 200 : pyemf.FW_NORMAL, 300 : pyemf.FW_NORMAL, 400 : pyemf.FW_NORMAL, 500 : pyemf.FW_NORMAL, 600 : pyemf.FW_BOLD, 700 : pyemf.FW_BOLD, 800 : pyemf.FW_BOLD, 900 : pyemf.FW_BOLD, 'ultralight' : pyemf.FW_ULTRALIGHT, 'light' : pyemf.FW_LIGHT, 'normal' : pyemf.FW_NORMAL, 'medium' : pyemf.FW_MEDIUM, 'semibold' : pyemf.FW_SEMIBOLD, 'bold' : pyemf.FW_BOLD, 'heavy' : pyemf.FW_HEAVY, 'ultrabold' : pyemf.FW_ULTRABOLD, 'black' : pyemf.FW_BLACK, } def __init__(self, outfile, width, height, dpi): "Initialize the renderer with a gd image instance" self.outfile = outfile # a map from get_color args to colors self._cached = {} # dict of hashed properties to already created font handles self._fontHandle = {} self.lastHandle = {'font':-1, 'pen':-1, 'brush':-1} self.emf=pyemf.EMF(width,height,dpi,'in') self.width=int(width*dpi) self.height=int(height*dpi) self.dpi = dpi self.pointstodpi = dpi/72.0 self.hackPointsForMathExponent = 2.0 # set background transparent for text self.emf.SetBkMode(pyemf.TRANSPARENT) # set baseline for text to be bottom left corner self.emf.SetTextAlign( pyemf.TA_BOTTOM|pyemf.TA_LEFT) self._lastClipRect = None if debugPrint: print "RendererEMF: (%f,%f) %s dpi=%f" % (self.width,self.height,outfile,dpi) def save(self): self.emf.save(self.outfile) def draw_arc(self, gcEdge, rgbFace, x, y, width, height, angle1, angle2, rotation): """ Draw an arc using GraphicsContext instance gcEdge, centered at x,y, with width and height and angles from 0.0 to 360.0 0 degrees is at 3-o'clock positive angles are anti-clockwise If the color rgbFace is not None, fill the arc with it. """ if debugPrint: print "draw_arc: (%f,%f) angles=(%f,%f) w,h=(%f,%f)" % (x,y,angle1,angle2,width,height) pen=self.select_pen(gcEdge) brush=self.select_brush(rgbFace) # This algorithm doesn't work very well on small circles # because of rounding error. This shows up most obviously on # legends where the circles are small anyway, and it is # compounded by the fact that it puts several circles right # next to each other so the differences are obvious. hw=width/2 hh=height/2 x1=int(x-width/2) y1=int(y-height/2) if brush: self.emf.Pie(int(x-hw),int(self.height-(y-hh)),int(x+hw),int(self.height-(y+hh)),int(x+math.cos(angle1*math.pi/180.0)*hw),int(self.height-(y+math.sin(angle1*math.pi/180.0)*hh)),int(x+math.cos(angle2*math.pi/180.0)*hw),int(self.height-(y+math.sin(angle2*math.pi/180.0)*hh))) else: self.emf.Arc(int(x-hw),int(self.height-(y-hh)),int(x+hw),int(self.height-(y+hh)),int(x+math.cos(angle1*math.pi/180.0)*hw),int(self.height-(y+math.sin(angle1*math.pi/180.0)*hh)),int(x+math.cos(angle2*math.pi/180.0)*hw),int(self.height-(y+math.sin(angle2*math.pi/180.0)*hh))) def handle_clip_rectangle(self, gc): new_bounds = gc.get_clip_rectangle() if new_bounds is not None: new_bounds = new_bounds.bounds if self._lastClipRect != new_bounds: self._lastClipRect = new_bounds if new_bounds is None: # use the maximum rectangle to disable clipping x, y, width, height = (0, 0, self.width, self.height) else: x, y, width, height = new_bounds self.emf.BeginPath() self.emf.MoveTo(int(x), int(self.height - y)) self.emf.LineTo(int(x) + int(width), int(self.height - y)) self.emf.LineTo(int(x) + int(width), int(self.height - y) - int(height)) self.emf.LineTo(int(x), int(self.height - y) - int(height)) self.emf.CloseFigure() self.emf.EndPath() self.emf.SelectClipPath() def convert_path(self, tpath): self.emf.BeginPath() last_points = None for points, code in tpath.iter_segments(): if code == Path.MOVETO: self.emf.MoveTo(*points) elif code == Path.LINETO: self.emf.LineTo(*points) elif code == Path.CURVE3: points = quad2cubic(*(list(last_points[-2:]) + list(points))) self.emf.PolyBezierTo(zip(points[2::2], points[3::2])) elif code == Path.CURVE4: self.emf.PolyBezierTo(zip(points[::2], points[1::2])) elif code == Path.CLOSEPOLY: self.emf.CloseFigure() last_points = points self.emf.EndPath() def draw_path(self, gc, path, transform, rgbFace=None): """ Draws a :class:`~matplotlib.path.Path` instance using the given affine transform. """ self.handle_clip_rectangle(gc) gc._rgb = gc._rgb[:3] self.select_pen(gc) self.select_brush(rgbFace) transform = transform + Affine2D().scale(1.0, -1.0).translate(0.0, self.height) tpath = transform.transform_path(path) self.convert_path(tpath) if rgbFace is None: self.emf.StrokePath() else: self.emf.StrokeAndFillPath() def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): """ Draw the Image instance into the current axes; x is the distance in pixels from the left hand side of the canvas. y is the distance from the origin. That is, if origin is upper, y is the distance from top. If origin is lower, y is the distance from bottom bbox is a matplotlib.transforms.BBox instance for clipping, or None """ # pyemf2 currently doesn't support bitmaps. pass def draw_line(self, gc, x1, y1, x2, y2): """ Draw a single line from x1,y1 to x2,y2 """ if debugPrint: print "draw_line: (%f,%f) - (%f,%f)" % (x1,y1,x2,y2) if self.select_pen(gc): self.emf.Polyline([(long(x1),long(self.height-y1)),(long(x2),long(self.height-y2))]) else: if debugPrint: print "draw_line: optimizing away (%f,%f) - (%f,%f)" % (x1,y1,x2,y2) def draw_lines(self, gc, x, y): """ x and y are equal length arrays, draw lines connecting each point in x, y """ if debugPrint: print "draw_lines: %d points" % len(str(x)) # optimize away anything that won't actually be drawn. Edge # style must not be PS_NULL for it to appear on screen. if self.select_pen(gc): points = [(long(x[i]), long(self.height-y[i])) for i in range(len(x))] self.emf.Polyline(points) def draw_point(self, gc, x, y): """ Draw a single point at x,y Where 'point' is a device-unit point (or pixel), not a matplotlib point """ if debugPrint: print "draw_point: (%f,%f)" % (x,y) # don't cache this pen pen=EMFPen(self.emf,gc) self.emf.SetPixel(long(x),long(self.height-y),(pen.r,pen.g,pen.b)) def draw_polygon(self, gcEdge, rgbFace, points): """ Draw a polygon using the GraphicsContext instance gc. points is a len vertices tuple, each element giving the x,y coords a vertex If the color rgbFace is not None, fill the polygon with it """ if debugPrint: print "draw_polygon: %d points" % len(points) # optimize away anything that won't actually draw. Either a # face color or edge style must be defined pen=self.select_pen(gcEdge) brush=self.select_brush(rgbFace) if pen or brush: points = [(long(x), long(self.height-y)) for x,y in points] self.emf.Polygon(points) else: points = [(long(x), long(self.height-y)) for x,y in points] if debugPrint: print "draw_polygon: optimizing away polygon: %d points = %s" % (len(points),str(points)) def draw_rectangle(self, gcEdge, rgbFace, x, y, width, height): """ Draw a non-filled rectangle using the GraphicsContext instance gcEdge, with lower left at x,y with width and height. If rgbFace is not None, fill the rectangle with it. """ if debugPrint: print "draw_rectangle: (%f,%f) w=%f,h=%f" % (x,y,width,height) # optimize away anything that won't actually draw. Either a # face color or edge style must be defined pen=self.select_pen(gcEdge) brush=self.select_brush(rgbFace) if pen or brush: self.emf.Rectangle(int(x),int(self.height-y),int(x)+int(width),int(self.height-y)-int(height)) else: if debugPrint: print "draw_rectangle: optimizing away (%f,%f) w=%f,h=%f" % (x,y,width,height) def draw_text(self, gc, x, y, s, prop, angle, ismath=False): """ Draw the text.Text instance s at x,y (display coords) with font properties instance prop at angle in degrees, using GraphicsContext gc **backend implementers note** When you are trying to determine if you have gotten your bounding box right (which is what enables the text layout/alignment to work properly), it helps to change the line in text.py if 0: bbox_artist(self, renderer) to if 1, and then the actual bounding box will be blotted along with your text. """ if ismath: s = self.strip_math(s) self.handle_clip_rectangle(gc) self.emf.SetTextColor(gc.get_rgb()[:3]) self.select_font(prop,angle) if isinstance(s, unicode): # unicode characters do not seem to work with pyemf try: s = s.replace(u'\u2212', '-').encode('iso-8859-1') except UnicodeEncodeError: pass self.emf.TextOut(x,y,s) def draw_plain_text(self, gc, x, y, s, prop, angle): """ Draw a text string verbatim; no conversion is done. """ if debugText: print "draw_plain_text: (%f,%f) %d degrees: '%s'" % (x,y,angle,s) if debugText: print " properties:\n"+str(prop) self.select_font(prop,angle) # haxor follows! The subtleties of text placement in EMF # still elude me a bit. It always seems to be too high on the # page, about 10 pixels too high on a 300dpi resolution image. # So, I'm adding this hack for the moment: hackoffsetper300dpi=10 xhack=math.sin(angle*math.pi/180.0)*hackoffsetper300dpi*self.dpi/300.0 yhack=math.cos(angle*math.pi/180.0)*hackoffsetper300dpi*self.dpi/300.0 self.emf.TextOut(long(x+xhack),long(y+yhack),s) def draw_math_text(self, gc, x, y, s, prop, angle): """ Draw a subset of TeX, currently handles exponents only. Since pyemf doesn't have any raster functionality yet, the texmanager.get_rgba won't help. """ if debugText: print "draw_math_text: (%f,%f) %d degrees: '%s'" % (x,y,angle,s) s = s[1:-1] # strip the $ from front and back match=re.match("10\^\{(.+)\}",s) if match: exp=match.group(1) if debugText: print " exponent=%s" % exp font = self._get_font_ttf(prop) font.set_text("10", 0.0) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 self.draw_plain_text(gc,x,y,"10",prop,angle) propexp=prop.copy() propexp.set_size(prop.get_size_in_points()*.8) self.draw_plain_text(gc,x+w+self.points_to_pixels(self.hackPointsForMathExponent),y-(h/2),exp,propexp,angle) else: # if it isn't an exponent, then render the raw TeX string. self.draw_plain_text(gc,x,y,s,prop,angle) def get_math_text_width_height(self, s, prop): """ get the width and height in display coords of the string s with FontPropertry prop, ripped right out of backend_ps. This method must be kept in sync with draw_math_text. """ if debugText: print "get_math_text_width_height:" s = s[1:-1] # strip the $ from front and back match=re.match("10\^\{(.+)\}",s) if match: exp=match.group(1) if debugText: print " exponent=%s" % exp font = self._get_font_ttf(prop) font.set_text("10", 0.0) w1, h1 = font.get_width_height() propexp=prop.copy() propexp.set_size(prop.get_size_in_points()*.8) fontexp=self._get_font_ttf(propexp) fontexp.set_text(exp, 0.0) w2, h2 = fontexp.get_width_height() w=w1+w2 h=h1+(h2/2) w /= 64.0 # convert from subpixels h /= 64.0 w+=self.points_to_pixels(self.hackPointsForMathExponent) if debugText: print " math string=%s w,h=(%f,%f)" % (s, w, h) else: w,h=self.get_text_width_height(s,prop,False) return w, h def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height in display coords of the string s with FontPropertry prop """ if ismath: s = self.strip_math(s) font = self._get_font_ttf(prop) font.set_text(s, 0.0) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 d = font.get_descent() d /= 64.0 return w, h, d def flipy(self): """return true if y small numbers are top for renderer Is used for drawing text (text.py) and images (image.py) only """ return True def get_canvas_width_height(self): """ return the canvas width and height in display coords """ return self.width,self.height def set_handle(self,type,handle): """ Update the EMF file with the current handle, but only if it isn't the same as the last one. Don't want to flood the file with duplicate info. """ if self.lastHandle[type] != handle: self.emf.SelectObject(handle) self.lastHandle[type]=handle def get_font_handle(self, prop, angle): """ Look up the handle for the font based on the dict of properties *and* the rotation angle, since in EMF the font rotation is a part of the font definition. """ prop=EMFFontProperties(prop,angle) size=int(prop.get_size_in_points()*self.pointstodpi) face=prop.get_name() key = hash(prop) handle = self._fontHandle.get(key) if handle is None: handle=self.emf.CreateFont(-size, 0, int(angle)*10, int(angle)*10, self.fontweights.get(prop.get_weight(), pyemf.FW_NORMAL), int(prop.get_style() == 'italic'), 0, 0, pyemf.ANSI_CHARSET, pyemf.OUT_DEFAULT_PRECIS, pyemf.CLIP_DEFAULT_PRECIS, pyemf.DEFAULT_QUALITY, pyemf.DEFAULT_PITCH | pyemf.FF_DONTCARE, face); if debugHandle: print "get_font_handle: creating handle=%d for face=%s size=%d" % (handle,face,size) self._fontHandle[key]=handle if debugHandle: print " found font handle %d for face=%s size=%d" % (handle,face,size) self.set_handle("font",handle) return handle def select_font(self,prop,angle): handle=self.get_font_handle(prop,angle) self.set_handle("font",handle) def select_pen(self, gc): """ Select a pen that includes the color, line width and line style. Return the pen if it will draw a line, or None if the pen won't produce any output (i.e. the style is PS_NULL) """ pen=EMFPen(self.emf,gc) key=hash(pen) handle=self._fontHandle.get(key) if handle is None: handle=pen.get_handle() self._fontHandle[key]=handle if debugHandle: print " found pen handle %d" % handle self.set_handle("pen",handle) if pen.style != pyemf.PS_NULL: return pen else: return None def select_brush(self, rgb): """ Select a fill color, and return the brush if the color is valid or None if this won't produce a fill operation. """ if rgb is not None: brush=EMFBrush(self.emf,rgb) key=hash(brush) handle=self._fontHandle.get(key) if handle is None: handle=brush.get_handle() self._fontHandle[key]=handle if debugHandle: print " found brush handle %d" % handle self.set_handle("brush",handle) return brush else: return None def _get_font_ttf(self, prop): """ get the true type font properties, used because EMFs on windows will use true type fonts. """ key = hash(prop) font = _fontd.get(key) if font is None: fname = findfont(prop) if debugText: print "_get_font_ttf: name=%s" % fname font = FT2Font(str(fname)) _fontd[key] = font font.clear() size = prop.get_size_in_points() font.set_size(size, self.dpi) return font def get_text_width_height(self, s, prop, ismath): """ get the width and height in display coords of the string s with FontPropertry prop, ripped right out of backend_ps """ if debugText: print "get_text_width_height: ismath=%s properties: %s" % (str(ismath),str(prop)) if ismath: if debugText: print " MATH TEXT! = %s" % str(ismath) w,h = self.get_math_text_width_height(s, prop) return w,h font = self._get_font_ttf(prop) font.set_text(s, 0.0) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 if debugText: print " text string=%s w,h=(%f,%f)" % (s, w, h) return w, h def new_gc(self): return GraphicsContextEMF() def points_to_pixels(self, points): # if backend doesn't have dpi, eg, postscript or svg #return points # elif backend assumes a value for pixels_per_inch #return points/72.0 * self.dpi.get() * pixels_per_inch/72.0 # else return points/72.0 * self.dpi class GraphicsContextEMF(GraphicsContextBase): """ The graphics context provides the color, line styles, etc... See the gtk and postscript backends for examples of mapping the graphics context attributes (cap styles, join styles, line widths, colors) to a particular backend. In GTK this is done by wrapping a gtk.gdk.GC object and forwarding the appropriate calls to it using a dictionary mapping styles to gdk constants. In Postscript, all the work is done by the renderer, mapping line styles to postscript calls. If it's more appropriate to do the mapping at the renderer level (as in the postscript backend), you don't need to override any of the GC methods. If it's more appropriate to wrap an instance (as in the GTK backend) and do the mapping here, you'll need to override several of the setter methods. The base GraphicsContext stores colors as a RGB tuple on the unit interval, eg, (0.5, 0.0, 1.0). You may need to map this to colors appropriate for your backend. """ pass ######################################################################## # # The following functions and classes are for pylab and implement # window/figure managers, etc... # ######################################################################## def draw_if_interactive(): """ For image backends - is not required For GUI backends - this should be overriden if drawing should be done in interactive python mode """ pass def show(): """ For image backends - is not required For GUI backends - show() is usually the last line of a pylab script and tells the backend that it is time to draw. In interactive mode, this may be a do nothing func. See the GTK backend for an example of how to handle interactive versus batch mode """ for manager in Gcf.get_all_fig_managers(): # do something to display the GUI pass def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ # if a main-level app must be created, this is the usual place to # do it -- see backend_wx, backend_wxagg and backend_tkagg for # examples. Not all GUIs require explicit instantiation of a # main-level app (egg backend_gtk, backend_gtkagg) for pylab FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasEMF(thisFig) manager = FigureManagerEMF(canvas, num) return manager class FigureCanvasEMF(FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance """ def draw(self): """ Draw the figure using the renderer """ pass filetypes = {'emf': 'Enhanced Metafile'} def print_emf(self, filename, dpi=300, **kwargs): width, height = self.figure.get_size_inches() renderer = RendererEMF(filename,width,height,dpi) self.figure.draw(renderer) renderer.save() def get_default_filetype(self): return 'emf' class FigureManagerEMF(FigureManagerBase): """ Wrap everything up into a window for the pylab interface For non interactive backends, the base class does all the work """ pass ######################################################################## # # Now just provide the standard names that backend.__init__ is expecting # ######################################################################## FigureManager = FigureManagerEMF