D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
opt
/
alt
/
python27
/
lib64
/
python2.7
/
site-packages
/
matplotlib
/
delaunay
/
Filename :
triangulate.py
back
Copy
import warnings # 2.3 compatibility try: set except NameError: import sets set = sets.Set import numpy as np from matplotlib._delaunay import delaunay from interpolate import LinearInterpolator, NNInterpolator __all__ = ['Triangulation', 'DuplicatePointWarning'] class DuplicatePointWarning(RuntimeWarning): """Duplicate points were passed in to the triangulation routine. """ class Triangulation(object): """A Delaunay triangulation of points in a plane. Triangulation(x, y) x, y -- the coordinates of the points as 1-D arrays of floats Let us make the following definitions: npoints = number of points input nedges = number of edges in the triangulation ntriangles = number of triangles in the triangulation point_id = an integer identifying a particular point (specifically, an index into x and y), range(0, npoints) edge_id = an integer identifying a particular edge, range(0, nedges) triangle_id = an integer identifying a particular triangle range(0, ntriangles) Attributes: (all should be treated as read-only to maintain consistency) x, y -- the coordinates of the points as 1-D arrays of floats. circumcenters -- (ntriangles, 2) array of floats giving the (x,y) coordinates of the circumcenters of each triangle (indexed by a triangle_id). edge_db -- (nedges, 2) array of point_id's giving the points forming each edge in no particular order; indexed by an edge_id. triangle_nodes -- (ntriangles, 3) array of point_id's giving the points forming each triangle in counter-clockwise order; indexed by a triangle_id. triangle_neighbors -- (ntriangles, 3) array of triangle_id's giving the neighboring triangle; indexed by a triangle_id. The value can also be -1 meaning that that edge is on the convex hull of the points and there is no neighbor on that edge. The values are ordered such that triangle_neighbors[tri, i] corresponds with the edge *opposite* triangle_nodes[tri, i]. As such, these neighbors are also in counter-clockwise order. hull -- list of point_id's giving the nodes which form the convex hull of the point set. This list is sorted in counter-clockwise order. """ def __init__(self, x, y): self.x = np.asarray(x, dtype=np.float64) self.y = np.asarray(y, dtype=np.float64) if self.x.shape != self.y.shape or len(self.x.shape) != 1: raise ValueError("x,y must be equal-length 1-D arrays") self.old_shape = self.x.shape j_unique = self._collapse_duplicate_points() if j_unique.shape != self.x.shape: warnings.warn( "Input data contains duplicate x,y points; some values are ignored.", DuplicatePointWarning, ) self.j_unique = j_unique self.x = self.x[self.j_unique] self.y = self.y[self.j_unique] else: self.j_unique = None self.circumcenters, self.edge_db, self.triangle_nodes, \ self.triangle_neighbors = delaunay(self.x, self.y) self.hull = self._compute_convex_hull() def _collapse_duplicate_points(self): """Generate index array that picks out unique x,y points. This appears to be required by the underlying delaunay triangulation code. """ # Find the indices of the unique entries j_sorted = np.lexsort(keys=(self.x, self.y)) mask_unique = np.hstack([ True, (np.diff(self.x[j_sorted]) != 0) | (np.diff(self.y[j_sorted]) != 0), ]) return j_sorted[mask_unique] def _compute_convex_hull(self): """Extract the convex hull from the triangulation information. The output will be a list of point_id's in counter-clockwise order forming the convex hull of the data set. """ border = (self.triangle_neighbors == -1) edges = {} edges.update(dict(zip(self.triangle_nodes[border[:,0]][:,1], self.triangle_nodes[border[:,0]][:,2]))) edges.update(dict(zip(self.triangle_nodes[border[:,1]][:,2], self.triangle_nodes[border[:,1]][:,0]))) edges.update(dict(zip(self.triangle_nodes[border[:,2]][:,0], self.triangle_nodes[border[:,2]][:,1]))) # Take an arbitrary starting point and its subsequent node hull = list(edges.popitem()) while edges: hull.append(edges.pop(hull[-1])) # hull[-1] == hull[0], so remove hull[-1] hull.pop() return hull def linear_interpolator(self, z, default_value=np.nan): """Get an object which can interpolate within the convex hull by assigning a plane to each triangle. z -- an array of floats giving the known function values at each point in the triangulation. """ z = np.asarray(z, dtype=np.float64) if z.shape != self.old_shape: raise ValueError("z must be the same shape as x and y") if self.j_unique is not None: z = z[self.j_unique] return LinearInterpolator(self, z, default_value) def nn_interpolator(self, z, default_value=np.nan): """Get an object which can interpolate within the convex hull by the natural neighbors method. z -- an array of floats giving the known function values at each point in the triangulation. """ z = np.asarray(z, dtype=np.float64) if z.shape != self.old_shape: raise ValueError("z must be the same shape as x and y") if self.j_unique is not None: z = z[self.j_unique] return NNInterpolator(self, z, default_value) def prep_extrapolator(self, z, bbox=None): if bbox is None: bbox = (self.x[0], self.x[0], self.y[0], self.y[0]) minx, maxx, miny, maxy = np.asarray(bbox, np.float64) minx = min(minx, np.minimum.reduce(self.x)) miny = min(miny, np.minimum.reduce(self.y)) maxx = max(maxx, np.maximum.reduce(self.x)) maxy = max(maxy, np.maximum.reduce(self.y)) M = max((maxx-minx)/2, (maxy-miny)/2) midx = (minx + maxx)/2.0 midy = (miny + maxy)/2.0 xp, yp= np.array([[midx+3*M, midx, midx-3*M], [midy, midy+3*M, midy-3*M]]) x1 = np.hstack((self.x, xp)) y1 = np.hstack((self.y, yp)) newtri = self.__class__(x1, y1) # do a least-squares fit to a plane to make pseudo-data xy1 = np.ones((len(self.x), 3), np.float64) xy1[:,0] = self.x xy1[:,1] = self.y from numpy.dual import lstsq c, res, rank, s = lstsq(xy1, z) zp = np.hstack((z, xp*c[0] + yp*c[1] + c[2])) return newtri, zp def nn_extrapolator(self, z, bbox=None, default_value=np.nan): newtri, zp = self.prep_extrapolator(z, bbox) return newtri.nn_interpolator(zp, default_value) def linear_extrapolator(self, z, bbox=None, default_value=np.nan): newtri, zp = self.prep_extrapolator(z, bbox) return newtri.linear_interpolator(zp, default_value) def node_graph(self): """Return a graph of node_id's pointing to node_id's. The arcs of the graph correspond to the edges in the triangulation. {node_id: set([node_id, ...]), ...} """ g = {} for i, j in self.edge_db: s = g.setdefault(i, set()) s.add(j) s = g.setdefault(j, set()) s.add(i) return g