D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
opt
/
alt
/
python27
/
lib64
/
python2.7
/
site-packages
/
matplotlib
/
projections
/
Filename :
geo.py
back
Copy
import math import numpy as np import numpy.ma as ma import matplotlib rcParams = matplotlib.rcParams from matplotlib.axes import Axes from matplotlib import cbook from matplotlib.patches import Circle from matplotlib.path import Path import matplotlib.spines as mspines import matplotlib.axis as maxis from matplotlib.ticker import Formatter, Locator, NullLocator, FixedLocator, NullFormatter from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, \ BboxTransformTo, IdentityTransform, Transform, TransformWrapper class GeoAxes(Axes): """ An abstract base class for geographic projections """ class ThetaFormatter(Formatter): """ Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a degree symbol. """ def __init__(self, round_to=1.0): self._round_to = round_to def __call__(self, x, pos=None): degrees = (x / np.pi) * 180.0 degrees = round(degrees / self._round_to) * self._round_to if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: return r"$%0.0f^\circ$" % degrees else: return u"%0.0f\u00b0" % degrees RESOLUTION = 75 def _init_axis(self): self.xaxis = maxis.XAxis(self) self.yaxis = maxis.YAxis(self) # Do not register xaxis or yaxis with spines -- as done in # Axes._init_axis() -- until GeoAxes.xaxis.cla() works. # self.spines['geo'].register_axis(self.yaxis) self._update_transScale() def cla(self): Axes.cla(self) self.set_longitude_grid(30) self.set_latitude_grid(15) self.set_longitude_grid_ends(75) self.xaxis.set_minor_locator(NullLocator()) self.yaxis.set_minor_locator(NullLocator()) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') self.yaxis.set_tick_params(label1On=True) # Why do we need to turn on yaxis tick labels, but # xaxis tick labels are already on? self.grid(rcParams['axes.grid']) Axes.set_xlim(self, -np.pi, np.pi) Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0) def _set_lim_and_transforms(self): # A (possibly non-linear) projection on the (already scaled) data self.transProjection = self._get_core_transform(self.RESOLUTION) self.transAffine = self._get_affine_transform() self.transAxes = BboxTransformTo(self.bbox) # The complete data transformation stack -- from data all the # way to display coordinates self.transData = \ self.transProjection + \ self.transAffine + \ self.transAxes # This is the transform for longitude ticks. self._xaxis_pretransform = \ Affine2D() \ .scale(1.0, self._longitude_cap * 2.0) \ .translate(0.0, -self._longitude_cap) self._xaxis_transform = \ self._xaxis_pretransform + \ self.transData self._xaxis_text1_transform = \ Affine2D().scale(1.0, 0.0) + \ self.transData + \ Affine2D().translate(0.0, 4.0) self._xaxis_text2_transform = \ Affine2D().scale(1.0, 0.0) + \ self.transData + \ Affine2D().translate(0.0, -4.0) # This is the transform for latitude ticks. yaxis_stretch = Affine2D().scale(np.pi * 2.0, 1.0).translate(-np.pi, 0.0) yaxis_space = Affine2D().scale(1.0, 1.1) self._yaxis_transform = \ yaxis_stretch + \ self.transData yaxis_text_base = \ yaxis_stretch + \ self.transProjection + \ (yaxis_space + \ self.transAffine + \ self.transAxes) self._yaxis_text1_transform = \ yaxis_text_base + \ Affine2D().translate(-8.0, 0.0) self._yaxis_text2_transform = \ yaxis_text_base + \ Affine2D().translate(8.0, 0.0) def _get_affine_transform(self): transform = self._get_core_transform(1) xscale, _ = transform.transform_point((np.pi, 0)) _, yscale = transform.transform_point((0, np.pi / 2.0)) return Affine2D() \ .scale(0.5 / xscale, 0.5 / yscale) \ .translate(0.5, 0.5) def get_xaxis_transform(self,which='grid'): assert which in ['tick1','tick2','grid'] return self._xaxis_transform def get_xaxis_text1_transform(self, pad): return self._xaxis_text1_transform, 'bottom', 'center' def get_xaxis_text2_transform(self, pad): return self._xaxis_text2_transform, 'top', 'center' def get_yaxis_transform(self,which='grid'): assert which in ['tick1','tick2','grid'] return self._yaxis_transform def get_yaxis_text1_transform(self, pad): return self._yaxis_text1_transform, 'center', 'right' def get_yaxis_text2_transform(self, pad): return self._yaxis_text2_transform, 'center', 'left' def _gen_axes_patch(self): return Circle((0.5, 0.5), 0.5) def _gen_axes_spines(self): return {'geo':mspines.Spine.circular_spine(self, (0.5, 0.5), 0.5)} def set_yscale(self, *args, **kwargs): if args[0] != 'linear': raise NotImplementedError set_xscale = set_yscale def set_xlim(self, *args, **kwargs): Axes.set_xlim(self, -np.pi, np.pi) Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0) set_ylim = set_xlim def format_coord(self, long, lat): 'return a format string formatting the coordinate' long = long * (180.0 / np.pi) lat = lat * (180.0 / np.pi) if lat >= 0.0: ns = 'N' else: ns = 'S' if long >= 0.0: ew = 'E' else: ew = 'W' return u'%f\u00b0%s, %f\u00b0%s' % (abs(lat), ns, abs(long), ew) def set_longitude_grid(self, degrees): """ Set the number of degrees between each longitude grid. """ number = (360.0 / degrees) + 1 self.xaxis.set_major_locator( FixedLocator( np.linspace(-np.pi, np.pi, number, True)[1:-1])) self._logitude_degrees = degrees self.xaxis.set_major_formatter(self.ThetaFormatter(degrees)) def set_latitude_grid(self, degrees): """ Set the number of degrees between each longitude grid. """ number = (180.0 / degrees) + 1 self.yaxis.set_major_locator( FixedLocator( np.linspace(-np.pi / 2.0, np.pi / 2.0, number, True)[1:-1])) self._latitude_degrees = degrees self.yaxis.set_major_formatter(self.ThetaFormatter(degrees)) def set_longitude_grid_ends(self, degrees): """ Set the latitude(s) at which to stop drawing the longitude grids. """ self._longitude_cap = degrees * (np.pi / 180.0) self._xaxis_pretransform \ .clear() \ .scale(1.0, self._longitude_cap * 2.0) \ .translate(0.0, -self._longitude_cap) def get_data_ratio(self): ''' Return the aspect ratio of the data itself. ''' return 1.0 ### Interactive panning def can_zoom(self): """ Return True if this axes support the zoom box """ return False def start_pan(self, x, y, button): pass def end_pan(self): pass def drag_pan(self, button, key, x, y): pass class AitoffAxes(GeoAxes): name = 'aitoff' class AitoffTransform(Transform): """ The base Aitoff transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Aitoff transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Aitoff space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): longitude = ll[:, 0:1] latitude = ll[:, 1:2] # Pre-compute some values half_long = longitude / 2.0 cos_latitude = np.cos(latitude) alpha = np.arccos(cos_latitude * np.cos(half_long)) # Mask this array, or we'll get divide-by-zero errors alpha = ma.masked_where(alpha == 0.0, alpha) # We want unnormalized sinc. numpy.sinc gives us normalized sinc_alpha = ma.sin(alpha) / alpha x = (cos_latitude * np.sin(half_long)) / sinc_alpha y = (np.sin(latitude) / sinc_alpha) x.set_fill_value(0.0) y.set_fill_value(0.0) return np.concatenate((x.filled(), y.filled()), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return AitoffAxes.InvertedAitoffTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedAitoffTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, xy): # MGDTODO: Math is hard ;( return xy transform.__doc__ = Transform.transform.__doc__ def inverted(self): return AitoffAxes.AitoffTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.AitoffTransform(resolution) class HammerAxes(GeoAxes): name = 'hammer' class HammerTransform(Transform): """ The base Hammer transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Hammer transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Hammer space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): longitude = ll[:, 0:1] latitude = ll[:, 1:2] # Pre-compute some values half_long = longitude / 2.0 cos_latitude = np.cos(latitude) sqrt2 = np.sqrt(2.0) alpha = np.sqrt(1.0 + cos_latitude * np.cos(half_long)) x = (2.0 * sqrt2) * (cos_latitude * np.sin(half_long)) / alpha y = (sqrt2 * np.sin(latitude)) / alpha return np.concatenate((x, y), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return HammerAxes.InvertedHammerTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedHammerTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, xy): x = xy[:, 0:1] y = xy[:, 1:2] quarter_x = 0.25 * x half_y = 0.5 * y z = np.sqrt(1.0 - quarter_x*quarter_x - half_y*half_y) longitude = 2 * np.arctan((z*x) / (2.0 * (2.0*z*z - 1.0))) latitude = np.arcsin(y*z) return np.concatenate((longitude, latitude), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return HammerAxes.HammerTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.HammerTransform(resolution) class MollweideAxes(GeoAxes): name = 'mollweide' class MollweideTransform(Transform): """ The base Mollweide transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Mollweide transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Mollweide space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): def d(theta): delta = -(theta + np.sin(theta) - pi_sin_l) / (1 + np.cos(theta)) return delta, abs(delta) > 0.001 longitude = ll[:, 0:1] latitude = ll[:, 1:2] pi_sin_l = np.pi * np.sin(latitude) theta = 2.0 * latitude delta, large_delta = d(theta) while np.any(large_delta): theta += np.where(large_delta, delta, 0) delta, large_delta = d(theta) aux = theta / 2 x = (2.0 * np.sqrt(2.0) * longitude * np.cos(aux)) / np.pi y = (np.sqrt(2.0) * np.sin(aux)) return np.concatenate((x, y), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return MollweideAxes.InvertedMollweideTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedMollweideTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, xy): # MGDTODO: Math is hard ;( return xy transform.__doc__ = Transform.transform.__doc__ def inverted(self): return MollweideAxes.MollweideTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.MollweideTransform(resolution) class LambertAxes(GeoAxes): name = 'lambert' class LambertTransform(Transform): """ The base Lambert transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, center_longitude, center_latitude, resolution): """ Create a new Lambert transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Lambert space. """ Transform.__init__(self) self._resolution = resolution self._center_longitude = center_longitude self._center_latitude = center_latitude def transform(self, ll): longitude = ll[:, 0:1] latitude = ll[:, 1:2] clong = self._center_longitude clat = self._center_latitude cos_lat = np.cos(latitude) sin_lat = np.sin(latitude) diff_long = longitude - clong cos_diff_long = np.cos(diff_long) inner_k = (1.0 + np.sin(clat)*sin_lat + np.cos(clat)*cos_lat*cos_diff_long) # Prevent divide-by-zero problems inner_k = np.where(inner_k == 0.0, 1e-15, inner_k) k = np.sqrt(2.0 / inner_k) x = k*cos_lat*np.sin(diff_long) y = k*(np.cos(clat)*sin_lat - np.sin(clat)*cos_lat*cos_diff_long) return np.concatenate((x, y), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return LambertAxes.InvertedLambertTransform( self._center_longitude, self._center_latitude, self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class InvertedLambertTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, center_longitude, center_latitude, resolution): Transform.__init__(self) self._resolution = resolution self._center_longitude = center_longitude self._center_latitude = center_latitude def transform(self, xy): x = xy[:, 0:1] y = xy[:, 1:2] clong = self._center_longitude clat = self._center_latitude p = np.sqrt(x*x + y*y) p = np.where(p == 0.0, 1e-9, p) c = 2.0 * np.arcsin(0.5 * p) sin_c = np.sin(c) cos_c = np.cos(c) lat = np.arcsin(cos_c*np.sin(clat) + ((y*sin_c*np.cos(clat)) / p)) long = clong + np.arctan( (x*sin_c) / (p*np.cos(clat)*cos_c - y*np.sin(clat)*sin_c)) return np.concatenate((long, lat), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return LambertAxes.LambertTransform( self._center_longitude, self._center_latitude, self._resolution) inverted.__doc__ = Transform.inverted.__doc__ def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 self._center_longitude = kwargs.pop("center_longitude", 0.0) self._center_latitude = kwargs.pop("center_latitude", 0.0) GeoAxes.__init__(self, *args, **kwargs) self.set_aspect('equal', adjustable='box', anchor='C') self.cla() def cla(self): GeoAxes.cla(self) self.yaxis.set_major_formatter(NullFormatter()) def _get_core_transform(self, resolution): return self.LambertTransform( self._center_longitude, self._center_latitude, resolution) def _get_affine_transform(self): return Affine2D() \ .scale(0.25) \ .translate(0.5, 0.5)