D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
opt
/
alt
/
python27
/
lib64
/
python2.7
/
site-packages
/
matplotlib
/
projections
/
Filename :
polar.py
back
Copy
import math import warnings import numpy as np import matplotlib rcParams = matplotlib.rcParams from matplotlib.axes import Axes import matplotlib.axis as maxis from matplotlib import cbook from matplotlib import docstring from matplotlib.patches import Circle from matplotlib.path import Path from matplotlib.ticker import Formatter, Locator, FormatStrFormatter from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, \ BboxTransformTo, IdentityTransform, Transform, TransformWrapper, \ ScaledTranslation, blended_transform_factory, BboxTransformToMaxOnly import matplotlib.spines as mspines class PolarAxes(Axes): """ A polar graph projection, where the input dimensions are *theta*, *r*. Theta starts pointing east and goes anti-clockwise. """ name = 'polar' class PolarTransform(Transform): """ The base polar transform. This handles projection *theta* and *r* into Cartesian coordinate space *x* and *y*, but does not perform the ultimate affine transformation into the correct position. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, axis=None): Transform.__init__(self) self._axis = axis def transform(self, tr): xy = np.empty(tr.shape, np.float_) if self._axis is not None: rmin = self._axis.viewLim.ymin else: rmin = 0 t = tr[:, 0:1] r = tr[:, 1:2] x = xy[:, 0:1] y = xy[:, 1:2] if rmin != 0: r = r - rmin mask = r < 0 x[:] = np.where(mask, np.nan, r * np.cos(t)) y[:] = np.where(mask, np.nan, r * np.sin(t)) else: x[:] = r * np.cos(t) y[:] = r * np.sin(t) return xy transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices if len(vertices) == 2 and vertices[0, 0] == vertices[1, 0]: return Path(self.transform(vertices), path.codes) ipath = path.interpolated(path._interpolation_steps) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return PolarAxes.InvertedPolarTransform(self._axis) inverted.__doc__ = Transform.inverted.__doc__ class PolarAffine(Affine2DBase): """ The affine part of the polar projection. Scales the output so that maximum radius rests on the edge of the axes circle. """ def __init__(self, scale_transform, limits): """ *limits* is the view limit of the data. The only part of its bounds that is used is ymax (for the radius maximum). The theta range is always fixed to (0, 2pi). """ Affine2DBase.__init__(self) self._scale_transform = scale_transform self._limits = limits self.set_children(scale_transform, limits) self._mtx = None def get_matrix(self): if self._invalid: limits_scaled = self._limits.transformed(self._scale_transform) yscale = limits_scaled.ymax - limits_scaled.ymin affine = Affine2D() \ .scale(0.5 / yscale) \ .translate(0.5, 0.5) self._mtx = affine.get_matrix() self._inverted = None self._invalid = 0 return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ class InvertedPolarTransform(Transform): """ The inverse of the polar transform, mapping Cartesian coordinate space *x* and *y* back to *theta* and *r*. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, axis=None): Transform.__init__(self) self._axis = axis def transform(self, xy): x = xy[:, 0:1] y = xy[:, 1:] r = np.sqrt(x*x + y*y) if self._axis is not None: r += self._axis.viewLim.ymin theta = np.arccos(x / r) theta = np.where(y < 0, 2 * np.pi - theta, theta) return np.concatenate((theta, r), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return PolarAxes.PolarTransform() inverted.__doc__ = Transform.inverted.__doc__ class ThetaFormatter(Formatter): """ Used to format the *theta* tick labels. Converts the native unit of radians into degrees and adds a degree symbol. """ def __call__(self, x, pos=None): # \u00b0 : degree symbol if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: return r"$%0.0f^\circ$" % ((x / np.pi) * 180.0) else: # we use unicode, rather than mathtext with \circ, so # that it will work correctly with any arbitrary font # (assuming it has a degree sign), whereas $5\circ$ # will only work correctly with one of the supported # math fonts (Computer Modern and STIX) return u"%0.0f\u00b0" % ((x / np.pi) * 180.0) class RadialLocator(Locator): """ Used to locate radius ticks. Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base :class:`~matplotlib.ticker.Locator` (which may be different depending on the scale of the *r*-axis. """ def __init__(self, base): self.base = base def __call__(self): ticks = self.base() return [x for x in ticks if x > 0] def autoscale(self): return self.base.autoscale() def pan(self, numsteps): return self.base.pan(numsteps) def zoom(self, direction): return self.base.zoom(direction) def refresh(self): return self.base.refresh() def view_limits(self, vmin, vmax): vmin, vmax = self.base.view_limits(vmin, vmax) return 0, vmax def __init__(self, *args, **kwargs): """ Create a new Polar Axes for a polar plot. The following optional kwargs are supported: - *resolution*: The number of points of interpolation between each pair of data points. Set to 1 to disable interpolation. """ self._rpad = 0.05 self.resolution = kwargs.pop('resolution', None) if self.resolution not in (None, 1): warnings.warn( """The resolution kwarg to Polar plots is now ignored. If you need to interpolate data points, consider running cbook.simple_linear_interpolation on the data before passing to matplotlib.""") Axes.__init__(self, *args, **kwargs) self.set_aspect('equal', adjustable='box', anchor='C') self.cla() __init__.__doc__ = Axes.__init__.__doc__ def cla(self): Axes.cla(self) self.title.set_y(1.05) self.xaxis.set_major_formatter(self.ThetaFormatter()) angles = np.arange(0.0, 360.0, 45.0) self.set_thetagrids(angles) self.yaxis.set_major_locator(self.RadialLocator(self.yaxis.get_major_locator())) self.grid(rcParams['polaraxes.grid']) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') self.yaxis.set_tick_params(label1On=True) # Why do we need to turn on yaxis tick labels, but # xaxis tick labels are already on? def _init_axis(self): "move this out of __init__ because non-separable axes don't use it" self.xaxis = maxis.XAxis(self) self.yaxis = maxis.YAxis(self) # Calling polar_axes.xaxis.cla() or polar_axes.xaxis.cla() # results in weird artifacts. Therefore we disable this for # now. # self.spines['polar'].register_axis(self.yaxis) self._update_transScale() def _set_lim_and_transforms(self): self.transAxes = BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor # It is assumed that this part will have non-linear components self.transScale = TransformWrapper(IdentityTransform()) # A (possibly non-linear) projection on the (already scaled) # data. This one is aware of rmin self.transProjection = self.PolarTransform(self) # This one is not aware of rmin self.transPureProjection = self.PolarTransform() # An affine transformation on the data, generally to limit the # range of the axes self.transProjectionAffine = self.PolarAffine(self.transScale, self.viewLim) # The complete data transformation stack -- from data all the # way to display coordinates self.transData = self.transScale + self.transProjection + \ (self.transProjectionAffine + self.transAxes) # This is the transform for theta-axis ticks. It is # equivalent to transData, except it always puts r == 1.0 at # the edge of the axis circle. self._xaxis_transform = ( self.transPureProjection + self.PolarAffine(IdentityTransform(), Bbox.unit()) + self.transAxes) # The theta labels are moved from radius == 0.0 to radius == 1.1 self._theta_label1_position = Affine2D().translate(0.0, 1.1) self._xaxis_text1_transform = ( self._theta_label1_position + self._xaxis_transform) self._theta_label2_position = Affine2D().translate(0.0, 1.0 / 1.1) self._xaxis_text2_transform = ( self._theta_label2_position + self._xaxis_transform) # This is the transform for r-axis ticks. It scales the theta # axis so the gridlines from 0.0 to 1.0, now go from 0.0 to # 2pi. self._yaxis_transform = ( Affine2D().scale(np.pi * 2.0, 1.0) + self.transData) # The r-axis labels are put at an angle and padded in the r-direction self._r_label1_position = ScaledTranslation( 22.5, self._rpad, blended_transform_factory( Affine2D(), BboxTransformToMaxOnly(self.viewLim))) self._yaxis_text1_transform = ( self._r_label1_position + Affine2D().scale(1.0 / 360.0, 1.0) + self._yaxis_transform ) self._r_label2_position = ScaledTranslation( 22.5, -self._rpad, blended_transform_factory( Affine2D(), BboxTransformToMaxOnly(self.viewLim))) self._yaxis_text2_transform = ( self._r_label2_position + Affine2D().scale(1.0 / 360.0, 1.0) + self._yaxis_transform ) def get_xaxis_transform(self,which='grid'): assert which in ['tick1','tick2','grid'] return self._xaxis_transform def get_xaxis_text1_transform(self, pad): return self._xaxis_text1_transform, 'center', 'center' def get_xaxis_text2_transform(self, pad): return self._xaxis_text2_transform, 'center', 'center' def get_yaxis_transform(self,which='grid'): assert which in ['tick1','tick2','grid'] return self._yaxis_transform def get_yaxis_text1_transform(self, pad): return self._yaxis_text1_transform, 'center', 'center' def get_yaxis_text2_transform(self, pad): return self._yaxis_text2_transform, 'center', 'center' def _gen_axes_patch(self): return Circle((0.5, 0.5), 0.5) def _gen_axes_spines(self): return {'polar':mspines.Spine.circular_spine(self, (0.5, 0.5), 0.5)} def set_rmax(self, rmax): self.viewLim.y1 = rmax def get_rmax(self): return self.viewLim.ymax def set_rmin(self, rmin): self.viewLim.y0 = rmin def get_rmin(self): return self.viewLim.ymin def set_rlim(self, *args, **kwargs): if 'rmin' in kwargs: kwargs['ymin'] = kwargs.pop('rmin') if 'rmax' in kwargs: kwargs['ymax'] = kwargs.pop('rmax') return self.set_ylim(*args, **kwargs) def set_yscale(self, *args, **kwargs): Axes.set_yscale(self, *args, **kwargs) self.yaxis.set_major_locator( self.RadialLocator(self.yaxis.get_major_locator())) set_rscale = Axes.set_yscale set_rticks = Axes.set_yticks @docstring.dedent_interpd def set_thetagrids(self, angles, labels=None, frac=None, fmt=None, **kwargs): """ Set the angles at which to place the theta grids (these gridlines are equal along the theta dimension). *angles* is in degrees. *labels*, if not None, is a ``len(angles)`` list of strings of the labels to use at each angle. If *labels* is None, the labels will be ``fmt %% angle`` *frac* is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is outside the axes and 0.95 is inside the axes. Return value is a list of tuples (*line*, *label*), where *line* is :class:`~matplotlib.lines.Line2D` instances and the *label* is :class:`~matplotlib.text.Text` instances. kwargs are optional text properties for the labels: %(Text)s ACCEPTS: sequence of floats """ angles = np.asarray(angles, np.float_) self.set_xticks(angles * (np.pi / 180.0)) if labels is not None: self.set_xticklabels(labels) elif fmt is not None: self.xaxis.set_major_formatter(FormatStrFormatter(fmt)) if frac is not None: self._theta_label1_position.clear().translate(0.0, frac) self._theta_label2_position.clear().translate(0.0, 1.0 / frac) for t in self.xaxis.get_ticklabels(): t.update(kwargs) return self.xaxis.get_ticklines(), self.xaxis.get_ticklabels() @docstring.dedent_interpd def set_rgrids(self, radii, labels=None, angle=None, rpad=None, fmt=None, **kwargs): """ Set the radial locations and labels of the *r* grids. The labels will appear at radial distances *radii* at the given *angle* in degrees. *labels*, if not None, is a ``len(radii)`` list of strings of the labels to use at each radius. If *labels* is None, the built-in formatter will be used. *rpad* is a fraction of the max of *radii* which will pad each of the radial labels in the radial direction. Return value is a list of tuples (*line*, *label*), where *line* is :class:`~matplotlib.lines.Line2D` instances and the *label* is :class:`~matplotlib.text.Text` instances. kwargs are optional text properties for the labels: %(Text)s ACCEPTS: sequence of floats """ radii = np.asarray(radii) rmin = radii.min() if rmin <= 0: raise ValueError('radial grids must be strictly positive') self.set_yticks(radii) if labels is not None: self.set_yticklabels(labels) elif fmt is not None: self.yaxis.set_major_formatter(FormatStrFormatter(fmt)) if angle is None: angle = self._r_label1_position.to_values()[4] if rpad is not None: self._rpad = rpad self._r_label1_position._t = (angle, self._rpad) self._r_label1_position.invalidate() self._r_label2_position._t = (angle, -self._rpad) self._r_label2_position.invalidate() for t in self.yaxis.get_ticklabels(): t.update(kwargs) return self.yaxis.get_gridlines(), self.yaxis.get_ticklabels() def set_xscale(self, scale, *args, **kwargs): if scale != 'linear': raise NotImplementedError("You can not set the xscale on a polar plot.") def set_xlim(self, *args, **kargs): # The xlim is fixed, no matter what you do self.viewLim.intervalx = (0.0, np.pi * 2.0) def format_coord(self, theta, r): """ Return a format string formatting the coordinate using Unicode characters. """ theta /= math.pi # \u03b8: lower-case theta # \u03c0: lower-case pi # \u00b0: degree symbol return u'\u03b8=%0.3f\u03c0 (%0.3f\u00b0), r=%0.3f' % (theta, theta * 180.0, r) def get_data_ratio(self): ''' Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0 ''' return 1.0 ### Interactive panning def can_zoom(self): """ Return True if this axes support the zoom box """ return False def start_pan(self, x, y, button): angle = self._r_label1_position.to_values()[4] / 180.0 * np.pi mode = '' if button == 1: epsilon = np.pi / 45.0 t, r = self.transData.inverted().transform_point((x, y)) if t >= angle - epsilon and t <= angle + epsilon: mode = 'drag_r_labels' elif button == 3: mode = 'zoom' self._pan_start = cbook.Bunch( rmax = self.get_rmax(), trans = self.transData.frozen(), trans_inverse = self.transData.inverted().frozen(), r_label_angle = self._r_label1_position.to_values()[4], x = x, y = y, mode = mode ) def end_pan(self): del self._pan_start def drag_pan(self, button, key, x, y): p = self._pan_start if p.mode == 'drag_r_labels': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) # Deal with theta dt0 = t - startt dt1 = startt - t if abs(dt1) < abs(dt0): dt = abs(dt1) * sign(dt0) * -1.0 else: dt = dt0 * -1.0 dt = (dt / np.pi) * 180.0 rpad = self._rpad self._r_label1_position._t = (p.r_label_angle - dt, rpad) self._r_label1_position.invalidate() self._r_label2_position._t = (p.r_label_angle - dt, -rpad) self._r_label2_position.invalidate() elif p.mode == 'zoom': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) dr = r - startr # Deal with r scale = r / startr self.set_rmax(p.rmax / scale) # These are a couple of aborted attempts to project a polar plot using # cubic bezier curves. # def transform_path(self, path): # twopi = 2.0 * np.pi # halfpi = 0.5 * np.pi # vertices = path.vertices # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # maxtd = td.max() # interpolate = np.ceil(maxtd / halfpi) # if interpolate > 1.0: # vertices = self.interpolate(vertices, interpolate) # vertices = self.transform(vertices) # result = np.zeros((len(vertices) * 3 - 2, 2), np.float_) # codes = mpath.Path.CURVE4 * np.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type) # result[0] = vertices[0] # codes[0] = mpath.Path.MOVETO # kappa = 4.0 * ((np.sqrt(2.0) - 1.0) / 3.0) # kappa = 0.5 # p0 = vertices[0:-1] # p1 = vertices[1: ] # x0 = p0[:, 0:1] # y0 = p0[:, 1: ] # b0 = ((y0 - x0) - y0) / ((x0 + y0) - x0) # a0 = y0 - b0*x0 # x1 = p1[:, 0:1] # y1 = p1[:, 1: ] # b1 = ((y1 - x1) - y1) / ((x1 + y1) - x1) # a1 = y1 - b1*x1 # x = -(a0-a1) / (b0-b1) # y = a0 + b0*x # xk = (x - x0) * kappa + x0 # yk = (y - y0) * kappa + y0 # result[1::3, 0:1] = xk # result[1::3, 1: ] = yk # xk = (x - x1) * kappa + x1 # yk = (y - y1) * kappa + y1 # result[2::3, 0:1] = xk # result[2::3, 1: ] = yk # result[3::3] = p1 # print vertices[-2:] # print result[-2:] # return mpath.Path(result, codes) # twopi = 2.0 * np.pi # halfpi = 0.5 * np.pi # vertices = path.vertices # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # maxtd = td.max() # interpolate = np.ceil(maxtd / halfpi) # print "interpolate", interpolate # if interpolate > 1.0: # vertices = self.interpolate(vertices, interpolate) # result = np.zeros((len(vertices) * 3 - 2, 2), np.float_) # codes = mpath.Path.CURVE4 * np.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type) # result[0] = vertices[0] # codes[0] = mpath.Path.MOVETO # kappa = 4.0 * ((np.sqrt(2.0) - 1.0) / 3.0) # tkappa = np.arctan(kappa) # hyp_kappa = np.sqrt(kappa*kappa + 1.0) # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # r0 = vertices[0:-1, 1] # r1 = vertices[1: , 1] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # td_scaled = td / (np.pi * 0.5) # rd = r1 - r0 # r0kappa = r0 * kappa * td_scaled # r1kappa = r1 * kappa * td_scaled # ravg_kappa = ((r1 + r0) / 2.0) * kappa * td_scaled # result[1::3, 0] = t0 + (tkappa * td_scaled) # result[1::3, 1] = r0*hyp_kappa # # result[1::3, 1] = r0 / np.cos(tkappa * td_scaled) # np.sqrt(r0*r0 + ravg_kappa*ravg_kappa) # result[2::3, 0] = t1 - (tkappa * td_scaled) # result[2::3, 1] = r1*hyp_kappa # # result[2::3, 1] = r1 / np.cos(tkappa * td_scaled) # np.sqrt(r1*r1 + ravg_kappa*ravg_kappa) # result[3::3, 0] = t1 # result[3::3, 1] = r1 # print vertices[:6], result[:6], t0[:6], t1[:6], td[:6], td_scaled[:6], tkappa # result = self.transform(result) # return mpath.Path(result, codes) # transform_path_non_affine = transform_path