D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
opt
/
alt
/
python27
/
lib64
/
python2.7
/
site-packages
/
matplotlib
/
Filename :
bezier.py
back
Copy
""" A module providing some utility functions regarding bezier path manipulation. """ import numpy as np from math import sqrt from matplotlib.path import Path from operator import xor import warnings # some functions def get_intersection(cx1, cy1, cos_t1, sin_t1, cx2, cy2, cos_t2, sin_t2): """ return a intersecting point between a line through (cx1, cy1) and having angle t1 and a line through (cx2, cy2) and angle t2. """ # line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0. # line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1 line1_rhs = sin_t1 * cx1 - cos_t1 * cy1 line2_rhs = sin_t2 * cx2 - cos_t2 * cy2 # rhs matrix a, b = sin_t1, -cos_t1 c, d = sin_t2, -cos_t2 ad_bc = a*d-b*c if ad_bc == 0.: raise ValueError("Given lines do not intersect") #rhs_inverse a_, b_ = d, -b c_, d_ = -c, a a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]] x = a_* line1_rhs + b_ * line2_rhs y = c_* line1_rhs + d_ * line2_rhs return x, y def get_normal_points(cx, cy, cos_t, sin_t, length): """ For a line passing through (*cx*, *cy*) and having a angle *t*, return locations of the two points located along its perpendicular line at the distance of *length*. """ if length == 0.: return cx, cy, cx, cy cos_t1, sin_t1 = sin_t, -cos_t cos_t2, sin_t2 = -sin_t, cos_t x1, y1 = length*cos_t1 + cx, length*sin_t1 + cy x2, y2 = length*cos_t2 + cx, length*sin_t2 + cy return x1, y1, x2, y2 ## BEZIER routines # subdividing bezier curve # http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html def _de_casteljau1(beta, t): next_beta = beta[:-1] * (1-t) + beta[1:] * t return next_beta def split_de_casteljau(beta, t): """split a bezier segment defined by its controlpoints *beta* into two separate segment divided at *t* and return their control points. """ beta = np.asarray(beta) beta_list = [beta] while True: beta = _de_casteljau1(beta, t) beta_list.append(beta) if len(beta) == 1: break left_beta = [beta[0] for beta in beta_list] right_beta = [beta[-1] for beta in reversed(beta_list)] return left_beta, right_beta def find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath, t0=0., t1=1., tolerence=0.01): """ Find a parameter t0 and t1 of the given bezier path which bounds the intersecting points with a provided closed path(*inside_closedpath*). Search starts from *t0* and *t1* and it uses a simple bisecting algorithm therefore one of the end point must be inside the path while the orther doesn't. The search stop when |t0-t1| gets smaller than the given tolerence. value for - bezier_point_at_t : a function which returns x, y coordinates at *t* - inside_closedpath : return True if the point is insed the path """ # inside_closedpath : function start = bezier_point_at_t(t0) end = bezier_point_at_t(t1) start_inside = inside_closedpath(start) end_inside = inside_closedpath(end) if not xor(start_inside, end_inside): raise ValueError("the segment does not seemed to intersect with the path") while 1: # return if the distance is smaller than the tolerence if (start[0]-end[0])**2 + (start[1]-end[1])**2 < tolerence**2: return t0, t1 # calculate the middle point middle_t = 0.5*(t0+t1) middle = bezier_point_at_t(middle_t) middle_inside = inside_closedpath(middle) if xor(start_inside, middle_inside): t1 = middle_t end = middle end_inside = middle_inside else: t0 = middle_t start = middle start_inside = middle_inside class BezierSegment: """ A simple class of a 2-dimensional bezier segment """ # Highrt order bezier lines can be supported by simplying adding # correcponding values. _binom_coeff = {1:np.array([1., 1.]), 2:np.array([1., 2., 1.]), 3:np.array([1., 3., 3., 1.])} def __init__(self, control_points): """ *control_points* : location of contol points. It needs have a shpae of n * 2, where n is the order of the bezier line. 1<= n <= 3 is supported. """ _o = len(control_points) self._orders = np.arange(_o) _coeff = BezierSegment._binom_coeff[_o - 1] _control_points = np.asarray(control_points) xx = _control_points[:,0] yy = _control_points[:,1] self._px = xx * _coeff self._py = yy * _coeff def point_at_t(self, t): "evaluate a point at t" one_minus_t_powers = np.power(1.-t, self._orders)[::-1] t_powers = np.power(t, self._orders) tt = one_minus_t_powers * t_powers _x = sum(tt * self._px) _y = sum(tt * self._py) return _x, _y def split_bezier_intersecting_with_closedpath(bezier, inside_closedpath, tolerence=0.01): """ bezier : control points of the bezier segment inside_closedpath : a function which returns true if the point is inside the path """ bz = BezierSegment(bezier) bezier_point_at_t = bz.point_at_t t0, t1 = find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath, tolerence=tolerence) _left, _right = split_de_casteljau(bezier, (t0+t1)/2.) return _left, _right def find_r_to_boundary_of_closedpath(inside_closedpath, xy, cos_t, sin_t, rmin=0., rmax=1., tolerence=0.01): """ Find a radius r (centered at *xy*) between *rmin* and *rmax* at which it intersect with the path. inside_closedpath : function cx, cy : center cos_t, sin_t : cosine and sine for the angle rmin, rmax : """ cx, cy = xy def _f(r): return cos_t*r + cx, sin_t*r + cy find_bezier_t_intersecting_with_closedpath(_f, inside_closedpath, t0=rmin, t1=rmax, tolerence=tolerence) ## matplotlib specific def split_path_inout(path, inside, tolerence=0.01, reorder_inout=False): """ divide a path into two segment at the point where inside(x, y) becomes False. """ path_iter = path.iter_segments() ctl_points, command = path_iter.next() begin_inside = inside(ctl_points[-2:]) # true if begin point is inside bezier_path = None ctl_points_old = ctl_points concat = np.concatenate iold=0 i = 1 for ctl_points, command in path_iter: iold=i i += len(ctl_points)/2 if inside(ctl_points[-2:]) != begin_inside: bezier_path = concat([ctl_points_old[-2:], ctl_points]) break ctl_points_old = ctl_points if bezier_path is None: raise ValueError("The path does not seem to intersect with the patch") bp = zip(bezier_path[::2], bezier_path[1::2]) left, right = split_bezier_intersecting_with_closedpath(bp, inside, tolerence) if len(left) == 2: codes_left = [Path.LINETO] codes_right = [Path.MOVETO, Path.LINETO] elif len(left) == 3: codes_left = [Path.CURVE3, Path.CURVE3] codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3] elif len(left) == 4: codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4] codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] else: raise ValueError() verts_left = left[1:] verts_right = right[:] #i += 1 if path.codes is None: path_in = Path(concat([path.vertices[:i], verts_left])) path_out = Path(concat([verts_right, path.vertices[i:]])) else: path_in = Path(concat([path.vertices[:iold], verts_left]), concat([path.codes[:iold], codes_left])) path_out = Path(concat([verts_right, path.vertices[i:]]), concat([codes_right, path.codes[i:]])) if reorder_inout and begin_inside == False: path_in, path_out = path_out, path_in return path_in, path_out def inside_circle(cx, cy, r): r2 = r**2 def _f(xy): x, y = xy return (x-cx)**2 + (y-cy)**2 < r2 return _f # quadratic bezier lines def get_cos_sin(x0, y0, x1, y1): dx, dy = x1-x0, y1-y0 d = (dx*dx + dy*dy)**.5 return dx/d, dy/d def check_if_parallel(dx1, dy1, dx2, dy2, tolerence=1.e-5): """ returns * 1 if two lines are parralel in same direction * -1 if two lines are parralel in opposite direction * 0 otherwise """ theta1 = np.arctan2(dx1, dy1) theta2 = np.arctan2(dx2, dy2) dtheta = np.abs(theta1 - theta2) if dtheta < tolerence: return 1 elif np.abs(dtheta - np.pi) < tolerence: return -1 else: return False def get_parallels(bezier2, width): """ Given the quadraitc bezier control points *bezier2*, returns control points of quadrativ bezier lines roughly parralel to given one separated by *width*. """ # The parallel bezier lines constructed by following ways. # c1 and c2 are contol points representing the begin and end of the bezier line. # cm is the middle point c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c2x, c2y = bezier2[2] parallel_test = check_if_parallel(c1x-cmx, c1y-cmy, cmx-c2x, cmy-c2y) if parallel_test == -1: warnings.warn("Lines do not intersect. A straight line is used instead.") #cmx, cmy = 0.5*(c1x+c2x), 0.5*(c1y+c2y) cos_t1, sin_t1 = get_cos_sin(c1x, c1y, c2x, c2y) cos_t2, sin_t2 = cos_t1, sin_t1 else: # t1 and t2 is the anlge between c1 and cm, cm, c2. They are # also a angle of the tangential line of the path at c1 and c2 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y) # find c1_left, c1_right which are located along the lines # throught c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c2_left and # c2_right with respect to c2. c1x_left, c1y_left, c1x_right, c1y_right = \ get_normal_points(c1x, c1y, cos_t1, sin_t1, width) c2x_left, c2y_left, c2x_right, c2y_right = \ get_normal_points(c2x, c2y, cos_t2, sin_t2, width) # find cm_left which is the intersectng point of a line through # c1_left with angle t1 and a line throught c2_left with angle # t2. Same with cm_right. if parallel_test != 0: # a special case for a straight line, i.e., angle between two # lines are smaller than some (arbitrtay) value. cmx_left, cmy_left = \ 0.5*(c1x_left+c2x_left), 0.5*(c1y_left+c2y_left) cmx_right, cmy_right = \ 0.5*(c1x_right+c2x_right), 0.5*(c1y_right+c2y_right) else: cmx_left, cmy_left = \ get_intersection(c1x_left, c1y_left, cos_t1, sin_t1, c2x_left, c2y_left, cos_t2, sin_t2) cmx_right, cmy_right = \ get_intersection(c1x_right, c1y_right, cos_t1, sin_t1, c2x_right, c2y_right, cos_t2, sin_t2) # the parralel bezier lines are created with control points of # [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right] path_left = [(c1x_left, c1y_left), (cmx_left, cmy_left), (c2x_left, c2y_left)] path_right = [(c1x_right, c1y_right), (cmx_right, cmy_right), (c2x_right, c2y_right)] return path_left, path_right def make_wedged_bezier2(bezier2, length, shrink_factor=0.5): """ Being similar to get_parallels, returns control points of two quadrativ bezier lines having a width roughly parralel to given one separated by *width*. """ xx1, yy1 = bezier2[2] xx2, yy2 = bezier2[1] xx3, yy3 = bezier2[0] cx, cy = xx3, yy3 x0, y0 = xx2, yy2 dist = sqrt((x0-cx)**2 + (y0-cy)**2) cos_t, sin_t = (x0-cx)/dist, (y0-cy)/dist, x1, y1, x2, y2 = get_normal_points(cx, cy, cos_t, sin_t, length) xx12, yy12 = (xx1+xx2)/2., (yy1+yy2)/2., xx23, yy23 = (xx2+xx3)/2., (yy2+yy3)/2., dist = sqrt((xx12-xx23)**2 + (yy12-yy23)**2) cos_t, sin_t = (xx12-xx23)/dist, (yy12-yy23)/dist, xm1, ym1, xm2, ym2 = get_normal_points(xx2, yy2, cos_t, sin_t, length*shrink_factor) l_plus = [(x1, y1), (xm1, ym1), (xx1, yy1)] l_minus = [(x2, y2), (xm2, ym2), (xx1, yy1)] return l_plus, l_minus def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y): """ Find control points of the bezier line throught c1, mm, c2. We simply assume that c1, mm, c2 which have parameteric value 0, 0.5, and 1. """ cmx = .5 * (4*mmx - (c1x + c2x)) cmy = .5 * (4*mmy - (c1y + c2y)) return [(c1x, c1y), (cmx, cmy), (c2x, c2y)] def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.): """ Being similar to get_parallels, returns control points of two quadrativ bezier lines having a width roughly parralel to given one separated by *width*. """ # c1, cm, c2 c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c3x, c3y = bezier2[2] # t1 and t2 is the anlge between c1 and cm, cm, c3. # They are also a angle of the tangential line of the path at c1 and c3 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y) # find c1_left, c1_right which are located along the lines # throught c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c3_left and # c3_right with respect to c3. c1x_left, c1y_left, c1x_right, c1y_right = \ get_normal_points(c1x, c1y, cos_t1, sin_t1, width*w1) c3x_left, c3y_left, c3x_right, c3y_right = \ get_normal_points(c3x, c3y, cos_t2, sin_t2, width*w2) # find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and c12-c23 c12x, c12y = (c1x+cmx)*.5, (c1y+cmy)*.5 c23x, c23y = (cmx+c3x)*.5, (cmy+c3y)*.5 c123x, c123y = (c12x+c23x)*.5, (c12y+c23y)*.5 # tangential angle of c123 (angle between c12 and c23) cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y) c123x_left, c123y_left, c123x_right, c123y_right = \ get_normal_points(c123x, c123y, cos_t123, sin_t123, width*wm) path_left = find_control_points(c1x_left, c1y_left, c123x_left, c123y_left, c3x_left, c3y_left) path_right = find_control_points(c1x_right, c1y_right, c123x_right, c123y_right, c3x_right, c3y_right) return path_left, path_right def make_path_regular(p): """ fill in the codes if None. """ c = p.codes if c is None: c = np.empty(p.vertices.shape[:1], "i") c.fill(Path.LINETO) c[0] = Path.MOVETO return Path(p.vertices, c) else: return p def concatenate_paths(paths): """ concatenate list of paths into a single path. """ vertices = [] codes = [] for p in paths: p = make_path_regular(p) vertices.append(p.vertices) codes.append(p.codes) _path = Path(np.concatenate(vertices), np.concatenate(codes)) return _path if 0: path = Path([(0, 0), (1, 0), (2, 2)], [Path.MOVETO, Path.CURVE3, Path.CURVE3]) left, right = divide_path_inout(path, inside) clf() ax = gca()