D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
opt
/
alt
/
python27
/
lib64
/
python2.7
/
site-packages
/
matplotlib
/
Filename :
contour.py
back
Copy
""" These are classes to support contour plotting and labelling for the axes class """ from __future__ import division import warnings import matplotlib as mpl import numpy as np from numpy import ma import matplotlib._cntr as _cntr import matplotlib.path as mpath import matplotlib.ticker as ticker import matplotlib.cm as cm import matplotlib.colors as colors import matplotlib.collections as collections import matplotlib.font_manager as font_manager import matplotlib.text as text import matplotlib.cbook as cbook import matplotlib.mlab as mlab import matplotlib.mathtext as mathtext import matplotlib.texmanager as texmanager # Import needed for adding manual selection capability to clabel from matplotlib.blocking_input import BlockingContourLabeler # We can't use a single line collection for contour because a line # collection can have only a single line style, and we want to be able to have # dashed negative contours, for example, and solid positive contours. # We could use a single polygon collection for filled contours, but it # seems better to keep line and filled contours similar, with one collection # per level. class ClabelText(text.Text): """ Unlike the ordinary text, the get_rotation returns an updated angle in the pixel coordinate assuming that the input rotation is an angle in data coordinate (or whatever transform set). """ def get_rotation(self): angle = text.Text.get_rotation(self) trans = self.get_transform() x, y = self.get_position() new_angles = trans.transform_angles(np.array([angle]), np.array([[x, y]])) return new_angles[0] class ContourLabeler: '''Mixin to provide labelling capability to ContourSet''' def clabel(self, *args, **kwargs): """ call signature:: clabel(cs, **kwargs) adds labels to line contours in *cs*, where *cs* is a :class:`~matplotlib.contour.ContourSet` object returned by contour. :: clabel(cs, v, **kwargs) only labels contours listed in *v*. Optional keyword arguments: *fontsize*: See http://matplotlib.sf.net/fonts.html *colors*: - if *None*, the color of each label matches the color of the corresponding contour - if one string color, e.g. *colors* = 'r' or *colors* = 'red', all labels will be plotted in this color - if a tuple of matplotlib color args (string, float, rgb, etc), different labels will be plotted in different colors in the order specified *inline*: controls whether the underlying contour is removed or not. Default is *True*. *inline_spacing*: space in pixels to leave on each side of label when placing inline. Defaults to 5. This spacing will be exact for labels at locations where the contour is straight, less so for labels on curved contours. *fmt*: a format string for the label. Default is '%1.3f' Alternatively, this can be a dictionary matching contour levels with arbitrary strings to use for each contour level (i.e., fmt[level]=string) *manual*: if *True*, contour labels will be placed manually using mouse clicks. Click the first button near a contour to add a label, click the second button (or potentially both mouse buttons at once) to finish adding labels. The third button can be used to remove the last label added, but only if labels are not inline. Alternatively, the keyboard can be used to select label locations (enter to end label placement, delete or backspace act like the third mouse button, and any other key will select a label location). *rightside_up*: if *True* (default), label rotations will always be plus or minus 90 degrees from level. *use_clabeltext*: if *True* (default is False), ClabelText class (instead of matplotlib.Text) is used to create labels. ClabelText recalculates rotation angles of texts during the drawing time, therefore this can be used if aspect of the axes changes. .. plot:: mpl_examples/pylab_examples/contour_demo.py """ """ NOTES on how this all works: clabel basically takes the input arguments and uses them to add a list of "label specific" attributes to the ContourSet object. These attributes are all of the form label* and names should be fairly self explanatory. Once these attributes are set, clabel passes control to the labels method (case of automatic label placement) or BlockingContourLabeler (case of manual label placement). """ fontsize = kwargs.get('fontsize', None) inline = kwargs.get('inline', 1) inline_spacing = kwargs.get('inline_spacing', 5) self.labelFmt = kwargs.get('fmt', '%1.3f') _colors = kwargs.get('colors', None) self._use_clabeltext = kwargs.get('use_clabeltext', False) # Detect if manual selection is desired and remove from argument list self.labelManual=kwargs.get('manual',False) self.rightside_up = kwargs.get('rightside_up', True) if len(args) == 0: levels = self.levels indices = range(len(levels)) elif len(args) == 1: levlabs = list(args[0]) indices, levels = [], [] for i, lev in enumerate(self.levels): if lev in levlabs: indices.append(i) levels.append(lev) if len(levels) < len(levlabs): msg = "Specified levels " + str(levlabs) msg += "\n don't match available levels " msg += str(self.levels) raise ValueError(msg) else: raise TypeError("Illegal arguments to clabel, see help(clabel)") self.labelLevelList = levels self.labelIndiceList = indices self.labelFontProps = font_manager.FontProperties() if fontsize == None: font_size = int(self.labelFontProps.get_size_in_points()) else: if type(fontsize) not in [int, float, str]: raise TypeError("Font size must be an integer number.") # Can't it be floating point, as indicated in line above? else: if type(fontsize) == str: font_size = int(self.labelFontProps.get_size_in_points()) else: self.labelFontProps.set_size(fontsize) font_size = fontsize self.labelFontSizeList = [font_size] * len(levels) if _colors == None: self.labelMappable = self self.labelCValueList = np.take(self.cvalues, self.labelIndiceList) else: cmap = colors.ListedColormap(_colors, N=len(self.labelLevelList)) self.labelCValueList = range(len(self.labelLevelList)) self.labelMappable = cm.ScalarMappable(cmap = cmap, norm = colors.NoNorm()) #self.labelTexts = [] # Initialized in ContourSet.__init__ #self.labelCValues = [] # same self.labelXYs = [] if self.labelManual: print 'Select label locations manually using first mouse button.' print 'End manual selection with second mouse button.' if not inline: print 'Remove last label by clicking third mouse button.' blocking_contour_labeler = BlockingContourLabeler(self) blocking_contour_labeler(inline,inline_spacing) else: self.labels(inline,inline_spacing) # Hold on to some old attribute names. These are depricated and will # be removed in the near future (sometime after 2008-08-01), but keeping # for now for backwards compatibility self.cl = self.labelTexts self.cl_xy = self.labelXYs self.cl_cvalues = self.labelCValues self.labelTextsList = cbook.silent_list('text.Text', self.labelTexts) return self.labelTextsList def print_label(self, linecontour,labelwidth): "if contours are too short, don't plot a label" lcsize = len(linecontour) if lcsize > 10 * labelwidth: return 1 xmax = np.amax(linecontour[:,0]) xmin = np.amin(linecontour[:,0]) ymax = np.amax(linecontour[:,1]) ymin = np.amin(linecontour[:,1]) lw = labelwidth if (xmax - xmin) > 1.2* lw or (ymax - ymin) > 1.2 * lw: return 1 else: return 0 def too_close(self, x,y, lw): "if there's a label already nearby, find a better place" if self.labelXYs != []: dist = [np.sqrt((x-loc[0]) ** 2 + (y-loc[1]) ** 2) for loc in self.labelXYs] for d in dist: if d < 1.2*lw: return 1 else: return 0 else: return 0 def get_label_coords(self, distances, XX, YY, ysize, lw): """ labels are ploted at a location with the smallest dispersion of the contour from a straight line unless there's another label nearby, in which case the second best place on the contour is picked up if there's no good place a label isplotted at the beginning of the contour """ hysize = int(ysize/2) adist = np.argsort(distances) for ind in adist: x, y = XX[ind][hysize], YY[ind][hysize] if self.too_close(x,y, lw): continue else: return x,y, ind ind = adist[0] x, y = XX[ind][hysize], YY[ind][hysize] return x,y, ind def get_label_width(self, lev, fmt, fsize): "get the width of the label in points" if not cbook.is_string_like(lev): lev = self.get_text(lev, fmt) lev, ismath = text.Text.is_math_text(lev) if ismath == 'TeX': if not hasattr(self, '_TeX_manager'): self._TeX_manager = texmanager.TexManager() lw, _, _ = self._TeX_manager.get_text_width_height_descent(lev, fsize) elif ismath: if not hasattr(self, '_mathtext_parser'): self._mathtext_parser = mathtext.MathTextParser('bitmap') img, _ = self._mathtext_parser.parse(lev, dpi=72, prop=self.labelFontProps) lw = img.get_width() # at dpi=72, the units are PostScript points else: lw = (len(lev)) * fsize return lw def get_real_label_width( self, lev, fmt, fsize ): """ This computes actual onscreen label width. This uses some black magic to determine onscreen extent of non-drawn label. This magic may not be very robust. """ # Find middle of axes xx = np.mean( np.asarray(self.ax.axis()).reshape(2,2), axis=1 ) # Temporarily create text object t = text.Text( xx[0], xx[1] ) self.set_label_props( t, self.get_text(lev,fmt), 'k' ) # Some black magic to get onscreen extent # NOTE: This will only work for already drawn figures, as the canvas # does not have a renderer otherwise. This is the reason this function # can't be integrated into the rest of the code. bbox = t.get_window_extent(renderer=self.ax.figure.canvas.renderer) # difference in pixel extent of image lw = np.diff(bbox.corners()[0::2,0])[0] return lw def set_label_props(self, label, text, color): "set the label properties - color, fontsize, text" label.set_text(text) label.set_color(color) label.set_fontproperties(self.labelFontProps) label.set_clip_box(self.ax.bbox) def get_text(self, lev, fmt): "get the text of the label" if cbook.is_string_like(lev): return lev else: if isinstance(fmt,dict): return fmt[lev] else: return fmt%lev def locate_label(self, linecontour, labelwidth): """find a good place to plot a label (relatively flat part of the contour) and the angle of rotation for the text object """ nsize= len(linecontour) if labelwidth > 1: xsize = int(np.ceil(nsize/labelwidth)) else: xsize = 1 if xsize == 1: ysize = nsize else: ysize = int(labelwidth) XX = np.resize(linecontour[:,0],(xsize, ysize)) YY = np.resize(linecontour[:,1],(xsize, ysize)) #I might have fouled up the following: yfirst = YY[:,0].reshape(xsize, 1) ylast = YY[:,-1].reshape(xsize, 1) xfirst = XX[:,0].reshape(xsize, 1) xlast = XX[:,-1].reshape(xsize, 1) s = (yfirst-YY) * (xlast-xfirst) - (xfirst-XX) * (ylast-yfirst) L = np.sqrt((xlast-xfirst)**2+(ylast-yfirst)**2).ravel() dist = np.add.reduce(([(abs(s)[i]/L[i]) for i in range(xsize)]),-1) x,y,ind = self.get_label_coords(dist, XX, YY, ysize, labelwidth) #print 'ind, x, y', ind, x, y # There must be a more efficient way... lc = [tuple(l) for l in linecontour] dind = lc.index((x,y)) #print 'dind', dind #dind = list(linecontour).index((x,y)) return x, y, dind def calc_label_rot_and_inline( self, slc, ind, lw, lc=None, spacing=5 ): """ This function calculates the appropriate label rotation given the linecontour coordinates in screen units, the index of the label location and the label width. It will also break contour and calculate inlining if *lc* is not empty (lc defaults to the empty list if None). *spacing* is the space around the label in pixels to leave empty. Do both of these tasks at once to avoid calling mlab.path_length multiple times, which is relatively costly. The method used here involves calculating the path length along the contour in pixel coordinates and then looking approximately label width / 2 away from central point to determine rotation and then to break contour if desired. """ if lc is None: lc = [] # Half the label width hlw = lw/2.0 # Check if closed and, if so, rotate contour so label is at edge closed = mlab.is_closed_polygon(slc) if closed: slc = np.r_[ slc[ind:-1], slc[:ind+1] ] if len(lc): # Rotate lc also if not empty lc = np.r_[ lc[ind:-1], lc[:ind+1] ] ind = 0 # Path length in pixel space pl = mlab.path_length(slc) pl = pl-pl[ind] # Use linear interpolation to get points around label xi = np.array( [ -hlw, hlw ] ) if closed: # Look at end also for closed contours dp = np.array([pl[-1],0]) else: dp = np.zeros_like(xi) ll = mlab.less_simple_linear_interpolation( pl, slc, dp+xi, extrap=True ) # get vector in pixel space coordinates from one point to other dd = np.diff( ll, axis=0 ).ravel() # Get angle of vector - must be calculated in pixel space for # text rotation to work correctly if np.all(dd==0): # Must deal with case of zero length label rotation = 0.0 else: rotation = np.arctan2(dd[1], dd[0]) * 180.0 / np.pi if self.rightside_up: # Fix angle so text is never upside-down if rotation > 90: rotation = rotation - 180.0 if rotation < -90: rotation = 180.0 + rotation # Break contour if desired nlc = [] if len(lc): # Expand range by spacing xi = dp + xi + np.array([-spacing,spacing]) # Get indices near points of interest I = mlab.less_simple_linear_interpolation( pl, np.arange(len(pl)), xi, extrap=False ) # If those indices aren't beyond contour edge, find x,y if (not np.isnan(I[0])) and int(I[0])<>I[0]: xy1 = mlab.less_simple_linear_interpolation( pl, lc, [ xi[0] ] ) if (not np.isnan(I[1])) and int(I[1])<>I[1]: xy2 = mlab.less_simple_linear_interpolation( pl, lc, [ xi[1] ] ) # Make integer I = [ np.floor(I[0]), np.ceil(I[1]) ] # Actually break contours if closed: # This will remove contour if shorter than label if np.all(~np.isnan(I)): nlc.append( np.r_[ xy2, lc[I[1]:I[0]+1], xy1 ] ) else: # These will remove pieces of contour if they have length zero if not np.isnan(I[0]): nlc.append( np.r_[ lc[:I[0]+1], xy1 ] ) if not np.isnan(I[1]): nlc.append( np.r_[ xy2, lc[I[1]:] ] ) # The current implementation removes contours completely # covered by labels. Uncomment line below to keep # original contour if this is the preferred behavoir. #if not len(nlc): nlc = [ lc ] return (rotation,nlc) def _get_label_text(self,x,y,rotation): dx,dy = self.ax.transData.inverted().transform_point((x,y)) t = text.Text(dx, dy, rotation = rotation, horizontalalignment='center', verticalalignment='center') return t def _get_label_clabeltext(self,x,y,rotation): # x, y, rotation is given in pixel coordinate. Convert them to # the data coordinate and create a label using ClabelText # class. This way, the roation of the clabel is along the # contour line always. transDataInv = self.ax.transData.inverted() dx,dy = transDataInv.transform_point((x,y)) drotation = transDataInv.transform_angles(np.array([rotation]), np.array([[x,y]])) t = ClabelText(dx, dy, rotation = drotation[0], horizontalalignment='center', verticalalignment='center') return t def _add_label(self, t, x, y, lev, cvalue): color = self.labelMappable.to_rgba(cvalue,alpha=self.alpha) _text = self.get_text(lev,self.labelFmt) self.set_label_props(t, _text, color) self.labelTexts.append(t) self.labelCValues.append(cvalue) self.labelXYs.append((x,y)) # Add label to plot here - useful for manual mode label selection self.ax.add_artist(t) def add_label(self,x,y,rotation,lev,cvalue): """ Addd contour label using Text class. """ t = self._get_label_text(x,y,rotation) self._add_label(t, x, y, lev, cvalue) def add_label_clabeltext(self,x,y,rotation,lev,cvalue): """ Addd contour label using ClabelText class. """ # x, y, rotation is given in pixel coordinate. Convert them to # the data coordinate and create a label using ClabelText # class. This way, the roation of the clabel is along the # contour line always. t = self._get_label_clabeltext(x,y,rotation) self._add_label(t, x, y, lev, cvalue) def pop_label(self,index=-1): '''Defaults to removing last label, but any index can be supplied''' self.labelCValues.pop(index) t = self.labelTexts.pop(index) t.remove() def labels(self, inline, inline_spacing): if self._use_clabeltext: add_label = self.add_label_clabeltext else: add_label = self.add_label for icon, lev, fsize, cvalue in zip( self.labelIndiceList, self.labelLevelList, self.labelFontSizeList, self.labelCValueList ): con = self.collections[icon] trans = con.get_transform() lw = self.get_label_width(lev, self.labelFmt, fsize) additions = [] paths = con.get_paths() for segNum, linepath in enumerate(paths): lc = linepath.vertices # Line contour slc0 = trans.transform(lc) # Line contour in screen coords # For closed polygons, add extra point to avoid division by # zero in print_label and locate_label. Other than these # functions, this is not necessary and should probably be # eventually removed. if mlab.is_closed_polygon( lc ): slc = np.r_[ slc0, slc0[1:2,:] ] else: slc = slc0 if self.print_label(slc,lw): # Check if long enough for a label x,y,ind = self.locate_label(slc, lw) if inline: lcarg = lc else: lcarg = None rotation,new=self.calc_label_rot_and_inline( slc0, ind, lw, lcarg, inline_spacing ) # Actually add the label add_label(x,y,rotation,lev,cvalue) # If inline, add new contours if inline: for n in new: # Add path if not empty or single point if len(n)>1: additions.append( mpath.Path(n) ) else: # If not adding label, keep old path additions.append(linepath) # After looping over all segments on a contour, remove old # paths and add new ones if inlining if inline: del paths[:] paths.extend(additions) class ContourSet(cm.ScalarMappable, ContourLabeler): """ Store a set of contour lines or filled regions. User-callable method: clabel Useful attributes: ax: the axes object in which the contours are drawn collections: a silent_list of LineCollections or PolyCollections levels: contour levels layers: same as levels for line contours; half-way between levels for filled contours. See _process_colors method. """ def __init__(self, ax, *args, **kwargs): """ Draw contour lines or filled regions, depending on whether keyword arg 'filled' is False (default) or True. The first three arguments must be: *ax*: axes object. *levels*: [level0, level1, ..., leveln] A list of floating point numbers indicating the contour levels. *allsegs*: [level0segs, level1segs, ...] List of all the polygon segments for all the *levels*. For contour lines len(allsegs) == len(levels), and for filled contour regions len(allsegs) = len(levels)-1. level0segs = [polygon0, polygon1, ...] polygon0 = array_like [[x0,y0], [x1,y1], ...] *allkinds*: None or [level0kinds, level1kinds, ...] Optional list of all the polygon vertex kinds (code types), as described and used in Path. This is used to allow multiply- connected paths such as holes within filled polygons. If not None, len(allkinds) == len(allsegs). level0kinds = [polygon0kinds, ...] polygon0kinds = [vertexcode0, vertexcode1, ...] If allkinds is not None, usually all polygons for a particular contour level are grouped together so that level0segs = [polygon0] and level0kinds = [polygon0kinds]. Keyword arguments are as described in :class:`~matplotlib.contour.QuadContourSet` object. **Examples:** .. plot:: mpl_examples/misc/contour_manual.py """ self.ax = ax self.levels = kwargs.get('levels', None) self.filled = kwargs.get('filled', False) self.linewidths = kwargs.get('linewidths', None) self.linestyles = kwargs.get('linestyles', None) self.alpha = kwargs.get('alpha', None) self.origin = kwargs.get('origin', None) self.extent = kwargs.get('extent', None) cmap = kwargs.get('cmap', None) self.colors = kwargs.get('colors', None) norm = kwargs.get('norm', None) self.extend = kwargs.get('extend', 'neither') self.antialiased = kwargs.get('antialiased', True) self.nchunk = kwargs.get('nchunk', 0) self.locator = kwargs.get('locator', None) if (isinstance(norm, colors.LogNorm) or isinstance(self.locator, ticker.LogLocator)): self.logscale = True if norm is None: norm = colors.LogNorm() if self.extend is not 'neither': raise ValueError('extend kwarg does not work yet with log scale') else: self.logscale = False if self.origin is not None: assert(self.origin in ['lower', 'upper', 'image']) if self.extent is not None: assert(len(self.extent) == 4) if cmap is not None: assert(isinstance(cmap, colors.Colormap)) if self.colors is not None and cmap is not None: raise ValueError('Either colors or cmap must be None') if self.origin == 'image': self.origin = mpl.rcParams['image.origin'] self._process_args(*args, **kwargs) self._process_levels() if self.colors is not None: ncolors = len(self.levels) if self.filled: ncolors -= 1 cmap = colors.ListedColormap(self.colors, N=ncolors) if self.filled: self.collections = cbook.silent_list('collections.PathCollection') else: self.collections = cbook.silent_list('collections.LineCollection') # label lists must be initialized here self.labelTexts = [] self.labelCValues = [] kw = {'cmap': cmap} if norm is not None: kw['norm'] = norm cm.ScalarMappable.__init__(self, **kw) # sets self.cmap; self._process_colors() self.allsegs, self.allkinds = self._get_allsegs_and_allkinds() if self.filled: if self.linewidths is not None: warnings.warn('linewidths is ignored by contourf') # Lower and upper contour levels. lowers, uppers = self._get_lowers_and_uppers() # Ensure allkinds can be zipped below. if self.allkinds is None: self.allkinds = [None]*len(self.allsegs) for level, level_upper, segs, kinds in \ zip(lowers, uppers, self.allsegs, self.allkinds): paths = self._make_paths(segs, kinds) # Default zorder taken from Collection zorder = kwargs.get('zorder', 1) col = collections.PathCollection(paths, antialiaseds = (self.antialiased,), edgecolors= 'none', alpha=self.alpha, zorder=zorder) self.ax.add_collection(col) self.collections.append(col) else: tlinewidths = self._process_linewidths() self.tlinewidths = tlinewidths tlinestyles = self._process_linestyles() for level, width, lstyle, segs in \ zip(self.levels, tlinewidths, tlinestyles, self.allsegs): # Default zorder taken from LineCollection zorder = kwargs.get('zorder', 2) col = collections.LineCollection(segs, linewidths = width, linestyle = lstyle, alpha=self.alpha, zorder=zorder) col.set_label('_nolegend_') self.ax.add_collection(col, False) self.collections.append(col) self.changed() # set the colors def _process_args(self, *args, **kwargs): """ Process args and kwargs; override in derived classes. Must set self.levels, self.zmin and self.zmax, and update axes limits. """ self.levels = args[0] self.allsegs = args[1] self.allkinds = len(args) > 2 and args[2] or None self.zmax = np.amax(self.levels) self.zmin = np.amin(self.levels) self._auto = False # Check lengths of levels and allsegs. if self.filled: if len(self.allsegs) != len(self.levels)-1: raise ValueError('must be one less number of segments as levels') else: if len(self.allsegs) != len(self.levels): raise ValueError('must be same number of segments as levels') # Check length of allkinds. if self.allkinds is not None and len(self.allkinds) != len(self.allsegs): raise ValueError('allkinds has different length to allsegs') # Determine x,y bounds and update axes data limits. havelimits = False for segs in self.allsegs: for seg in segs: seg = np.asarray(seg) if havelimits: min = np.minimum(min, seg.min(axis=0)) max = np.maximum(max, seg.max(axis=0)) else: min = seg.min(axis=0) max = seg.max(axis=0) havelimits = True if havelimits: self.ax.update_datalim([min, max]) self.ax.autoscale_view(tight=True) def _get_allsegs_and_allkinds(self): """ Override in derived classes to create and return allsegs and allkinds. allkinds can be None. """ return self.allsegs, self.allkinds def _get_lowers_and_uppers(self): """ Return (lowers,uppers) for filled contours. """ lowers = self._levels[:-1] if self.zmin == lowers[0]: # Include minimum values in lowest interval lowers = lowers.copy() # so we don't change self._levels if self.logscale: lowers[0] = 0.99 * self.zmin else: lowers[0] -= 1 uppers = self._levels[1:] return (lowers, uppers) def _make_paths(self, segs, kinds): if kinds is not None: return [mpath.Path(seg,codes=kind) for seg,kind in zip(segs,kinds)] else: return [mpath.Path(seg) for seg in segs] def changed(self): tcolors = [ (tuple(rgba),) for rgba in self.to_rgba(self.cvalues, alpha=self.alpha)] self.tcolors = tcolors for color, collection in zip(tcolors, self.collections): if self.filled: collection.set_facecolor(color) else: collection.set_color(color) for label, cv in zip(self.labelTexts, self.labelCValues): label.set_alpha(self.alpha) label.set_color(self.labelMappable.to_rgba(cv)) # add label colors cm.ScalarMappable.changed(self) def _autolev(self, z, N): ''' Select contour levels to span the data. We need two more levels for filled contours than for line contours, because for the latter we need to specify the lower and upper boundary of each range. For example, a single contour boundary, say at z = 0, requires only one contour line, but two filled regions, and therefore three levels to provide boundaries for both regions. ''' if self.locator is None: if self.logscale: self.locator = ticker.LogLocator() else: self.locator = ticker.MaxNLocator(N+1) self.locator.create_dummy_axis() zmax = self.zmax zmin = self.zmin self.locator.set_bounds(zmin, zmax) lev = self.locator() self._auto = True if self.filled: return lev # For line contours, drop levels outside the data range. return lev[(lev > zmin) & (lev < zmax)] def _contour_level_args(self, z, args): """ Determine the contour levels and store in self.levels. """ if self.filled: fn = 'contourf' else: fn = 'contour' self._auto = False if self.levels is None: if len(args) == 0: lev = self._autolev(z, 7) else: level_arg = args[0] try: if type(level_arg) == int: lev = self._autolev(z, level_arg) else: lev = np.asarray(level_arg).astype(np.float64) except: raise TypeError( "Last %s arg must give levels; see help(%s)" % (fn,fn)) if self.filled and len(lev) < 2: raise ValueError("Filled contours require at least 2 levels.") self.levels = lev def _process_levels(self): self._levels = list(self.levels) if self.extend in ('both', 'min'): self._levels.insert(0, min(self.levels[0],self.zmin) - 1) if self.extend in ('both', 'max'): self._levels.append(max(self.levels[-1],self.zmax) + 1) self._levels = np.asarray(self._levels) self.vmin = np.amin(self.levels) # alternative would be self.layers self.vmax = np.amax(self.levels) if self.extend in ('both', 'min'): self.vmin = 2 * self.levels[0] - self.levels[1] if self.extend in ('both', 'max'): self.vmax = 2 * self.levels[-1] - self.levels[-2] if self.filled: self.layers = 0.5 * (self._levels[:-1] + self._levels[1:]) if self.extend in ('both', 'min'): self.layers[0] = 0.5 * (self.vmin + self._levels[1]) if self.extend in ('both', 'max'): self.layers[-1] = 0.5 * (self.vmax + self._levels[-2]) else: self.layers = self.levels # contour: a line is a thin layer # Use only original levels--no extended levels def _process_colors(self): """ Color argument processing for contouring. Note that we base the color mapping on the contour levels, not on the actual range of the Z values. This means we don't have to worry about bad values in Z, and we always have the full dynamic range available for the selected levels. The color is based on the midpoint of the layer, except for an extended end layers. """ self.monochrome = self.cmap.monochrome if self.colors is not None: i0, i1 = 0, len(self.levels) if self.filled: i1 -= 1 if self.extend in ('both', 'min'): i0 = -1 if self.extend in ('both', 'max'): i1 += 1 self.cvalues = range(i0, i1) self.set_norm(colors.NoNorm()) else: self.cvalues = self.layers if not self.norm.scaled(): self.set_clim(self.vmin, self.vmax) if self.extend in ('both', 'max', 'min'): self.norm.clip = False self.set_array(self.layers) # self.tcolors are set by the "changed" method def _process_linewidths(self): linewidths = self.linewidths Nlev = len(self.levels) if linewidths is None: tlinewidths = [(mpl.rcParams['lines.linewidth'],)] * Nlev else: if not cbook.iterable(linewidths): linewidths = [linewidths] * Nlev else: linewidths = list(linewidths) if len(linewidths) < Nlev: nreps = int(np.ceil(Nlev/len(linewidths))) linewidths = linewidths * nreps if len(linewidths) > Nlev: linewidths = linewidths[:Nlev] tlinewidths = [(w,) for w in linewidths] return tlinewidths def _process_linestyles(self): linestyles = self.linestyles Nlev = len(self.levels) if linestyles is None: tlinestyles = ['solid'] * Nlev if self.monochrome: neg_ls = mpl.rcParams['contour.negative_linestyle'] eps = - (self.zmax - self.zmin) * 1e-15 for i, lev in enumerate(self.levels): if lev < eps: tlinestyles[i] = neg_ls else: if cbook.is_string_like(linestyles): tlinestyles = [linestyles] * Nlev elif cbook.iterable(linestyles): tlinestyles = list(linestyles) if len(tlinestyles) < Nlev: nreps = int(np.ceil(Nlev/len(linestyles))) tlinestyles = tlinestyles * nreps if len(tlinestyles) > Nlev: tlinestyles = tlinestyles[:Nlev] else: raise ValueError("Unrecognized type for linestyles kwarg") return tlinestyles def get_alpha(self): '''returns alpha to be applied to all ContourSet artists''' return self.alpha def set_alpha(self, alpha): '''sets alpha for all ContourSet artists''' self.alpha = alpha self.changed() def find_nearest_contour( self, x, y, indices=None, pixel=True ): """ Finds contour that is closest to a point. Defaults to measuring distance in pixels (screen space - useful for manual contour labeling), but this can be controlled via a keyword argument. Returns a tuple containing the contour, segment, index of segment, x & y of segment point and distance to minimum point. Call signature:: conmin,segmin,imin,xmin,ymin,dmin = find_nearest_contour( self, x, y, indices=None, pixel=True ) Optional keyword arguments:: *indices*: Indexes of contour levels to consider when looking for nearest point. Defaults to using all levels. *pixel*: If *True*, measure distance in pixel space, if not, measure distance in axes space. Defaults to *True*. """ # This function uses a method that is probably quite # inefficient based on converting each contour segment to # pixel coordinates and then comparing the given point to # those coordinates for each contour. This will probably be # quite slow for complex contours, but for normal use it works # sufficiently well that the time is not noticeable. # Nonetheless, improvements could probably be made. if indices==None: indices = range(len(self.levels)) dmin = 1e10 conmin = None segmin = None xmin = None ymin = None for icon in indices: con = self.collections[icon] trans = con.get_transform() paths = con.get_paths() for segNum, linepath in enumerate(paths): lc = linepath.vertices # transfer all data points to screen coordinates if desired if pixel: lc = trans.transform(lc) ds = (lc[:,0]-x)**2 + (lc[:,1]-y)**2 d = min( ds ) if d < dmin: dmin = d conmin = icon segmin = segNum imin = mpl.mlab.find( ds == d )[0] xmin = lc[imin,0] ymin = lc[imin,1] return (conmin,segmin,imin,xmin,ymin,dmin) class QuadContourSet(ContourSet): """ Create and store a set of contour lines or filled regions. User-callable method: clabel Useful attributes: ax: the axes object in which the contours are drawn collections: a silent_list of LineCollections or PolyCollections levels: contour levels layers: same as levels for line contours; half-way between levels for filled contours. See _process_colors method. """ def __init__(self, ax, *args, **kwargs): """ Calculate and draw contour lines or filled regions, depending on whether keyword arg 'filled' is False (default) or True. The first argument of the initializer must be an axes object. The remaining arguments and keyword arguments are described in QuadContourSet.contour_doc. """ ContourSet.__init__(self, ax, *args, **kwargs) def _process_args(self, *args, **kwargs): """ Process args and kwargs. """ if isinstance(args[0], QuadContourSet): C = args[0].Cntr if self.levels is None: self.levels = args[0].levels self.zmin = args[0].zmin self.zmax = args[0].zmax else: x, y, z = self._contour_args(args, kwargs) x0 = ma.minimum(x) x1 = ma.maximum(x) y0 = ma.minimum(y) y1 = ma.maximum(y) self.ax.update_datalim([(x0,y0), (x1,y1)]) self.ax.autoscale_view(tight=True) _mask = ma.getmask(z) if _mask is ma.nomask: _mask = None C = _cntr.Cntr(x, y, z.filled(), _mask) self.Cntr = C def _get_allsegs_and_allkinds(self): """ Create and return allsegs and allkinds by calling underlying C code. """ allsegs = [] if self.filled: lowers, uppers = self._get_lowers_and_uppers() allkinds = [] for level, level_upper in zip(lowers, uppers): nlist = self.Cntr.trace(level, level_upper, nchunk = self.nchunk) nseg = len(nlist)//2 segs = nlist[:nseg] kinds = nlist[nseg:] allsegs.append(segs) allkinds.append(kinds) else: allkinds = None for level in self.levels: nlist = self.Cntr.trace(level) nseg = len(nlist)//2 segs = nlist[:nseg] allsegs.append(segs) return allsegs, allkinds def _contour_args(self, args, kwargs): if self.filled: fn = 'contourf' else: fn = 'contour' Nargs = len(args) if Nargs <= 2: z = ma.asarray(args[0], dtype=np.float64) x, y = self._initialize_x_y(z) args = args[1:] elif Nargs <=4: x,y,z = self._check_xyz(args[:3], kwargs) args = args[3:] else: raise TypeError("Too many arguments to %s; see help(%s)" % (fn,fn)) z = ma.masked_invalid(z, copy=False) self.zmax = ma.maximum(z) self.zmin = ma.minimum(z) if self.logscale and self.zmin <= 0: z = ma.masked_where(z <= 0, z) warnings.warn('Log scale: values of z <= 0 have been masked') self.zmin = z.min() self._contour_level_args(z, args) return (x, y, z) def _check_xyz(self, args, kwargs): ''' For functions like contour, check that the dimensions of the input arrays match; if x and y are 1D, convert them to 2D using meshgrid. Possible change: I think we should make and use an ArgumentError Exception class (here and elsewhere). ''' x, y = args[:2] self.ax._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) x = self.ax.convert_xunits(x) y = self.ax.convert_yunits(y) x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) z = ma.asarray(args[2], dtype=np.float64) if z.ndim != 2: raise TypeError("Input z must be a 2D array.") else: Ny, Nx = z.shape if x.shape == z.shape and y.shape == z.shape: return x,y,z if x.ndim != 1 or y.ndim != 1: raise TypeError("Inputs x and y must be 1D or 2D.") nx, = x.shape ny, = y.shape if nx != Nx or ny != Ny: raise TypeError("Length of x must be number of columns in z,\n" + "and length of y must be number of rows.") x,y = np.meshgrid(x,y) return x,y,z def _initialize_x_y(self, z): ''' Return X, Y arrays such that contour(Z) will match imshow(Z) if origin is not None. The center of pixel Z[i,j] depends on origin: if origin is None, x = j, y = i; if origin is 'lower', x = j + 0.5, y = i + 0.5; if origin is 'upper', x = j + 0.5, y = Nrows - i - 0.5 If extent is not None, x and y will be scaled to match, as in imshow. If origin is None and extent is not None, then extent will give the minimum and maximum values of x and y. ''' if z.ndim != 2: raise TypeError("Input must be a 2D array.") else: Ny, Nx = z.shape if self.origin is None: # Not for image-matching. if self.extent is None: return np.meshgrid(np.arange(Nx), np.arange(Ny)) else: x0,x1,y0,y1 = self.extent x = np.linspace(x0, x1, Nx) y = np.linspace(y0, y1, Ny) return np.meshgrid(x, y) # Match image behavior: if self.extent is None: x0,x1,y0,y1 = (0, Nx, 0, Ny) else: x0,x1,y0,y1 = self.extent dx = float(x1 - x0)/Nx dy = float(y1 - y0)/Ny x = x0 + (np.arange(Nx) + 0.5) * dx y = y0 + (np.arange(Ny) + 0.5) * dy if self.origin == 'upper': y = y[::-1] return np.meshgrid(x,y) contour_doc = """ :func:`~matplotlib.pyplot.contour` and :func:`~matplotlib.pyplot.contourf` draw contour lines and filled contours, respectively. Except as noted, function signatures and return values are the same for both versions. :func:`~matplotlib.pyplot.contourf` differs from the MATLAB version in that it does not draw the polygon edges. To draw edges, add line contours with calls to :func:`~matplotlib.pyplot.contour`. call signatures:: contour(Z) make a contour plot of an array *Z*. The level values are chosen automatically. :: contour(X,Y,Z) *X*, *Y* specify the (*x*, *y*) coordinates of the surface :: contour(Z,N) contour(X,Y,Z,N) contour *N* automatically-chosen levels. :: contour(Z,V) contour(X,Y,Z,V) draw contour lines at the values specified in sequence *V* :: contourf(..., V) fill the (len(*V*)-1) regions between the values in *V* :: contour(Z, **kwargs) Use keyword args to control colors, linewidth, origin, cmap ... see below for more details. *X*, *Y*, and *Z* must be arrays with the same dimensions. *Z* may be a masked array, but filled contouring may not handle internal masked regions correctly. ``C = contour(...)`` returns a :class:`~matplotlib.contour.QuadContourSet` object. Optional keyword arguments: *colors*: [ None | string | (mpl_colors) ] If *None*, the colormap specified by cmap will be used. If a string, like 'r' or 'red', all levels will be plotted in this color. If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. *alpha*: float The alpha blending value *cmap*: [ None | Colormap ] A cm :class:`~matplotlib.cm.Colormap` instance or *None*. If *cmap* is *None* and *colors* is *None*, a default Colormap is used. *norm*: [ None | Normalize ] A :class:`matplotlib.colors.Normalize` instance for scaling data values to colors. If *norm* is *None* and *colors* is *None*, the default linear scaling is used. *levels* [level0, level1, ..., leveln] A list of floating point numbers indicating the level curves to draw; eg to draw just the zero contour pass ``levels=[0]`` *origin*: [ None | 'upper' | 'lower' | 'image' ] If *None*, the first value of *Z* will correspond to the lower left corner, location (0,0). If 'image', the rc value for ``image.origin`` will be used. This keyword is not active if *X* and *Y* are specified in the call to contour. *extent*: [ None | (x0,x1,y0,y1) ] If *origin* is not *None*, then *extent* is interpreted as in :func:`matplotlib.pyplot.imshow`: it gives the outer pixel boundaries. In this case, the position of Z[0,0] is the center of the pixel, not a corner. If *origin* is *None*, then (*x0*, *y0*) is the position of Z[0,0], and (*x1*, *y1*) is the position of Z[-1,-1]. This keyword is not active if *X* and *Y* are specified in the call to contour. *locator*: [ None | ticker.Locator subclass ] If *locator* is None, the default :class:`~matplotlib.ticker.MaxNLocator` is used. The locator is used to determine the contour levels if they are not given explicitly via the *V* argument. *extend*: [ 'neither' | 'both' | 'min' | 'max' ] Unless this is 'neither', contour levels are automatically added to one or both ends of the range so that all data are included. These added ranges are then mapped to the special colormap values which default to the ends of the colormap range, but can be set via :meth:`matplotlib.colors.Colormap.set_under` and :meth:`matplotlib.colors.Colormap.set_over` methods. *xunits*, *yunits*: [ None | registered units ] Override axis units by specifying an instance of a :class:`matplotlib.units.ConversionInterface`. contour-only keyword arguments: *linewidths*: [ None | number | tuple of numbers ] If *linewidths* is *None*, the default width in ``lines.linewidth`` in ``matplotlibrc`` is used. If a number, all levels will be plotted with this linewidth. If a tuple, different levels will be plotted with different linewidths in the order specified *linestyles*: [None | 'solid' | 'dashed' | 'dashdot' | 'dotted' ] If *linestyles* is *None*, the 'solid' is used. *linestyles* can also be an iterable of the above strings specifying a set of linestyles to be used. If this iterable is shorter than the number of contour levels it will be repeated as necessary. If contour is using a monochrome colormap and the contour level is less than 0, then the linestyle specified in ``contour.negative_linestyle`` in ``matplotlibrc`` will be used. contourf-only keyword arguments: *antialiased*: [ True | False ] enable antialiasing *nchunk*: [ 0 | integer ] If 0, no subdivision of the domain. Specify a positive integer to divide the domain into subdomains of roughly *nchunk* by *nchunk* points. This may never actually be advantageous, so this option may be removed. Chunking introduces artifacts at the chunk boundaries unless *antialiased* is *False*. Note: contourf fills intervals that are closed at the top; that is, for boundaries *z1* and *z2*, the filled region is:: z1 < z <= z2 There is one exception: if the lowest boundary coincides with the minimum value of the *z* array, then that minimum value will be included in the lowest interval. **Examples:** .. plot:: mpl_examples/pylab_examples/contour_demo.py .. plot:: mpl_examples/pylab_examples/contourf_demo.py """