D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
opt
/
alt
/
python27
/
lib64
/
python2.7
/
site-packages
/
matplotlib
/
Filename :
dates.py
back
Copy
#!/usr/bin/env python """ Matplotlib provides sophisticated date plotting capabilities, standing on the shoulders of python :mod:`datetime`, the add-on modules :mod:`pytz` and :mod:`dateutils`. :class:`datetime` objects are converted to floating point numbers which represent time in days since 0001-01-01 UTC, plus 1. For example, 0001-01-01, 06:00 is 1.25, not 0.25. The helper functions :func:`date2num`, :func:`num2date` and :func:`drange` are used to facilitate easy conversion to and from :mod:`datetime` and numeric ranges. .. note:: Like Python's datetime, mpl uses the Gregorian calendar for all conversions between dates and floating point numbers. This practice is not universal, and calendar differences can cause confusing differences between what Python and mpl give as the number of days since 0001-01-01 and what other software and databases yield. For example, the `US Naval Observatory <http://www.usno.navy.mil/USNO/astronomical-applications/data-services/jul-date>`_ uses a calendar that switches from Julian to Gregorian in October, 1582. Hence, using their calculator, the number of days between 0001-01-01 and 2006-04-01 is 732403, whereas using the Gregorian calendar via the datetime module we find:: In [31]:date(2006,4,1).toordinal() - date(1,1,1).toordinal() Out[31]:732401 A wide range of specific and general purpose date tick locators and formatters are provided in this module. See :mod:`matplotlib.ticker` for general information on tick locators and formatters. These are described below. All the matplotlib date converters, tickers and formatters are timezone aware, and the default timezone is given by the timezone parameter in your :file:`matplotlibrc` file. If you leave out a :class:`tz` timezone instance, the default from your rc file will be assumed. If you want to use a custom time zone, pass a :class:`pytz.timezone` instance with the tz keyword argument to :func:`num2date`, :func:`plot_date`, and any custom date tickers or locators you create. See `pytz <http://pytz.sourceforge.net>`_ for information on :mod:`pytz` and timezone handling. The `dateutil module <http://labix.org/python-dateutil>`_ provides additional code to handle date ticking, making it easy to place ticks on any kinds of dates. See examples below. Date tickers ------------ Most of the date tickers can locate single or multiple values. For example:: # tick on mondays every week loc = WeekdayLocator(byweekday=MO, tz=tz) # tick on mondays and saturdays loc = WeekdayLocator(byweekday=(MO, SA)) In addition, most of the constructors take an interval argument:: # tick on mondays every second week loc = WeekdayLocator(byweekday=MO, interval=2) The rrule locator allows completely general date ticking:: # tick every 5th easter rule = rrulewrapper(YEARLY, byeaster=1, interval=5) loc = RRuleLocator(rule) Here are all the date tickers: * :class:`MinuteLocator`: locate minutes * :class:`HourLocator`: locate hours * :class:`DayLocator`: locate specifed days of the month * :class:`WeekdayLocator`: Locate days of the week, eg MO, TU * :class:`MonthLocator`: locate months, eg 7 for july * :class:`YearLocator`: locate years that are multiples of base * :class:`RRuleLocator`: locate using a :class:`matplotlib.dates.rrulewrapper`. The :class:`rrulewrapper` is a simple wrapper around a :class:`dateutils.rrule` (`dateutil <https://moin.conectiva.com.br/DateUtil>`_) which allow almost arbitrary date tick specifications. See `rrule example <../examples/pylab_examples/date_demo_rrule.html>`_. * :class:`AutoDateLocator`: On autoscale, this class picks the best :class:`MultipleDateLocator` to set the view limits and the tick locations. Date formatters --------------- Here all all the date formatters: * :class:`AutoDateFormatter`: attempts to figure out the best format to use. This is most useful when used with the :class:`AutoDateLocator`. * :class:`DateFormatter`: use :func:`strftime` format strings * :class:`IndexDateFormatter`: date plots with implicit *x* indexing. """ import re, time, math, datetime import matplotlib import numpy as np import matplotlib.units as units import matplotlib.cbook as cbook import matplotlib.ticker as ticker from dateutil.rrule import rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, \ MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY from dateutil.relativedelta import relativedelta import dateutil.parser __all__ = ( 'date2num', 'num2date', 'drange', 'epoch2num', 'num2epoch', 'mx2num', 'DateFormatter', 'IndexDateFormatter', 'AutoDateFormatter', 'DateLocator', 'RRuleLocator', 'AutoDateLocator', 'YearLocator', 'MonthLocator', 'WeekdayLocator', 'DayLocator', 'HourLocator', 'MinuteLocator', 'SecondLocator', 'rrule', 'MO', 'TU', 'WE', 'TH', 'FR', 'SA', 'SU', 'YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY', 'HOURLY', 'MINUTELY', 'SECONDLY', 'relativedelta', 'seconds', 'minutes', 'hours', 'weeks') # Make a simple UTC instance so we don't always have to import # pytz. From the python datetime library docs: class _UTC(datetime.tzinfo): """UTC""" def utcoffset(self, dt): return datetime.timedelta(0) def tzname(self, dt): return "UTC" def dst(self, dt): return datetime.timedelta(0) UTC = _UTC() def _get_rc_timezone(): s = matplotlib.rcParams['timezone'] if s == 'UTC': return UTC import pytz return pytz.timezone(s) HOURS_PER_DAY = 24. MINUTES_PER_DAY = 60.*HOURS_PER_DAY SECONDS_PER_DAY = 60.*MINUTES_PER_DAY MUSECONDS_PER_DAY = 1e6*SECONDS_PER_DAY SEC_PER_MIN = 60 SEC_PER_HOUR = 3600 SEC_PER_DAY = SEC_PER_HOUR * 24 SEC_PER_WEEK = SEC_PER_DAY * 7 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = ( MO, TU, WE, TH, FR, SA, SU) WEEKDAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) def _to_ordinalf(dt): """ Convert :mod:`datetime` to the Gregorian date as UTC float days, preserving hours, minutes, seconds and microseconds. Return value is a :func:`float`. """ if hasattr(dt, 'tzinfo') and dt.tzinfo is not None: delta = dt.tzinfo.utcoffset(dt) if delta is not None: dt -= delta base = float(dt.toordinal()) if hasattr(dt, 'hour'): base += (dt.hour/HOURS_PER_DAY + dt.minute/MINUTES_PER_DAY + dt.second/SECONDS_PER_DAY + dt.microsecond/MUSECONDS_PER_DAY ) return base def _from_ordinalf(x, tz=None): """ Convert Gregorian float of the date, preserving hours, minutes, seconds and microseconds. Return value is a :class:`datetime`. """ if tz is None: tz = _get_rc_timezone() ix = int(x) dt = datetime.datetime.fromordinal(ix) remainder = float(x) - ix hour, remainder = divmod(24*remainder, 1) minute, remainder = divmod(60*remainder, 1) second, remainder = divmod(60*remainder, 1) microsecond = int(1e6*remainder) if microsecond<10: microsecond=0 # compensate for rounding errors dt = datetime.datetime( dt.year, dt.month, dt.day, int(hour), int(minute), int(second), microsecond, tzinfo=UTC).astimezone(tz) if microsecond>999990: # compensate for rounding errors dt += datetime.timedelta(microseconds=1e6-microsecond) return dt class strpdate2num: """ Use this class to parse date strings to matplotlib datenums when you know the date format string of the date you are parsing. See :file:`examples/load_demo.py`. """ def __init__(self, fmt): """ fmt: any valid strptime format is supported """ self.fmt = fmt def __call__(self, s): """s : string to be converted return value: a date2num float """ return date2num(datetime.datetime(*time.strptime(s, self.fmt)[:6])) def datestr2num(d): """ Convert a date string to a datenum using :func:`dateutil.parser.parse`. *d* can be a single string or a sequence of strings. """ if cbook.is_string_like(d): dt = dateutil.parser.parse(d) return date2num(dt) else: return date2num([dateutil.parser.parse(s) for s in d]) def date2num(d): """ *d* is either a :class:`datetime` instance or a sequence of datetimes. Return value is a floating point number (or sequence of floats) which gives the number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC, *plus* *one*. The addition of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not universal practice. For details, see the module docstring. """ if not cbook.iterable(d): return _to_ordinalf(d) else: return np.asarray([_to_ordinalf(val) for val in d]) def julian2num(j): 'Convert a Julian date (or sequence) to a matplotlib date (or sequence).' if cbook.iterable(j): j = np.asarray(j) return j - 1721424.5 def num2julian(n): 'Convert a matplotlib date (or sequence) to a Julian date (or sequence).' if cbook.iterable(n): n = np.asarray(n) return n + 1721424.5 def num2date(x, tz=None): """ *x* is a float value which gives the number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC *plus* *one*. The addition of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not universal practice. For details, see the module docstring. Return value is a :class:`datetime` instance in timezone *tz* (default to rcparams TZ value). If *x* is a sequence, a sequence of :class:`datetime` objects will be returned. """ if tz is None: tz = _get_rc_timezone() if not cbook.iterable(x): return _from_ordinalf(x, tz) else: return [_from_ordinalf(val, tz) for val in x] def drange(dstart, dend, delta): """ Return a date range as float Gregorian ordinals. *dstart* and *dend* are :class:`datetime` instances. *delta* is a :class:`datetime.timedelta` instance. """ step = (delta.days + delta.seconds/SECONDS_PER_DAY + delta.microseconds/MUSECONDS_PER_DAY) f1 = _to_ordinalf(dstart) f2 = _to_ordinalf(dend) return np.arange(f1, f2, step) ### date tickers and formatters ### class DateFormatter(ticker.Formatter): """ Tick location is seconds since the epoch. Use a :func:`strftime` format string. Python only supports :mod:`datetime` :func:`strftime` formatting for years greater than 1900. Thanks to Andrew Dalke, Dalke Scientific Software who contributed the :func:`strftime` code below to include dates earlier than this year. """ illegal_s = re.compile(r"((^|[^%])(%%)*%s)") def __init__(self, fmt, tz=None): """ *fmt* is an :func:`strftime` format string; *tz* is the :class:`tzinfo` instance. """ if tz is None: tz = _get_rc_timezone() self.fmt = fmt self.tz = tz def __call__(self, x, pos=0): if x==0: raise ValueError('DateFormatter found a value of x=0, which is an illegal date. This usually occurs because you have not informed the axis that it is plotting dates, eg with ax.xaxis_date()') dt = num2date(x, self.tz) return self.strftime(dt, self.fmt) def set_tzinfo(self, tz): self.tz = tz def _findall(self, text, substr): # Also finds overlaps sites = [] i = 0 while 1: j = text.find(substr, i) if j == -1: break sites.append(j) i=j+1 return sites # Dalke: I hope I did this math right. Every 28 years the # calendar repeats, except through century leap years excepting # the 400 year leap years. But only if you're using the Gregorian # calendar. def strftime(self, dt, fmt): fmt = self.illegal_s.sub(r"\1", fmt) fmt = fmt.replace("%s", "s") if dt.year > 1900: return cbook.unicode_safe(dt.strftime(fmt)) year = dt.year # For every non-leap year century, advance by # 6 years to get into the 28-year repeat cycle delta = 2000 - year off = 6*(delta // 100 + delta // 400) year = year + off # Move to around the year 2000 year = year + ((2000 - year)//28)*28 timetuple = dt.timetuple() s1 = time.strftime(fmt, (year,) + timetuple[1:]) sites1 = self._findall(s1, str(year)) s2 = time.strftime(fmt, (year+28,) + timetuple[1:]) sites2 = self._findall(s2, str(year+28)) sites = [] for site in sites1: if site in sites2: sites.append(site) s = s1 syear = "%4d" % (dt.year,) for site in sites: s = s[:site] + syear + s[site+4:] return cbook.unicode_safe(s) class IndexDateFormatter(ticker.Formatter): """ Use with :class:`~matplotlib.ticker.IndexLocator` to cycle format strings by index. """ def __init__(self, t, fmt, tz=None): """ *t* is a sequence of dates (floating point days). *fmt* is a :func:`strftime` format string. """ if tz is None: tz = _get_rc_timezone() self.t = t self.fmt = fmt self.tz = tz def __call__(self, x, pos=0): 'Return the label for time *x* at position *pos*' ind = int(round(x)) if ind>=len(self.t) or ind<=0: return '' dt = num2date(self.t[ind], self.tz) return cbook.unicode_safe(dt.strftime(self.fmt)) class AutoDateFormatter(ticker.Formatter): """ This class attempts to figure out the best format to use. This is most useful when used with the :class:`AutoDateLocator`. The AutoDateFormatter has a scale dictionary that maps the scale of the tick (the distance in days between one major tick) and a format string. The default looks like this:: self.scaled = { 365.0 : '%Y', 30. : '%b %Y', 1.0 : '%b %d %Y', 1./24. : '%H:%M:%D', } The algorithm picks the key in the dictionary that is >= the current scale and uses that format string. You can customize this dictionary by doing:: formatter = AutoDateFormatter() formatter.scaled[1/(24.*60.)] = '%M:%S' # only show min and sec """ # This can be improved by providing some user-level direction on # how to choose the best format (precedence, etc...) # Perhaps a 'struct' that has a field for each time-type where a # zero would indicate "don't show" and a number would indicate # "show" with some sort of priority. Same priorities could mean # show all with the same priority. # Or more simply, perhaps just a format string for each # possibility... def __init__(self, locator, tz=None, defaultfmt='%Y-%m-%d'): """ Autofmt the date labels. The default format is the one to use if none of the times in scaled match """ self._locator = locator self._tz = tz self.defaultfmt = defaultfmt self._formatter = DateFormatter(self.defaultfmt, tz) self.scaled = { 365.0 : '%Y', 30. : '%b %Y', 1.0 : '%b %d %Y', 1./24. : '%H:%M:%S', } def __call__(self, x, pos=0): scale = float( self._locator._get_unit() ) fmt = self.defaultfmt for k in sorted(self.scaled): if k>=scale: fmt = self.scaled[k] break self._formatter = DateFormatter(fmt, self._tz) return self._formatter(x, pos) class rrulewrapper: def __init__(self, freq, **kwargs): self._construct = kwargs.copy() self._construct["freq"] = freq self._rrule = rrule(**self._construct) def set(self, **kwargs): self._construct.update(kwargs) self._rrule = rrule(**self._construct) def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] return getattr(self._rrule, name) class DateLocator(ticker.Locator): hms0d = {'byhour':0, 'byminute':0,'bysecond':0} def __init__(self, tz=None): """ *tz* is a :class:`tzinfo` instance. """ if tz is None: tz = _get_rc_timezone() self.tz = tz def set_tzinfo(self, tz): self.tz = tz def datalim_to_dt(self): dmin, dmax = self.axis.get_data_interval() return num2date(dmin, self.tz), num2date(dmax, self.tz) def viewlim_to_dt(self): vmin, vmax = self.axis.get_view_interval() return num2date(vmin, self.tz), num2date(vmax, self.tz) def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 1 def _get_interval(self): """ Return the number of units for each tick. """ return 1 def nonsingular(self, vmin, vmax): unit = self._get_unit() interval = self._get_interval() if abs(vmax - vmin) < 1e-6: vmin -= 2*unit*interval vmax += 2*unit*interval return vmin, vmax class RRuleLocator(DateLocator): # use the dateutil rrule instance def __init__(self, o, tz=None): DateLocator.__init__(self, tz) self.rule = o def __call__(self): # if no data have been set, this will tank with a ValueError try: dmin, dmax = self.viewlim_to_dt() except ValueError: return [] if dmin>dmax: dmax, dmin = dmin, dmax delta = relativedelta(dmax, dmin) # We need to cap at the endpoints of valid datetime try: start = dmin - delta except ValueError: start = _from_ordinalf( 1.0 ) try: stop = dmax + delta except ValueError: # The magic number! stop = _from_ordinalf( 3652059.9999999 ) self.rule.set(dtstart=start, until=stop, count=self.MAXTICKS + 1) # estimate the number of ticks very approximately so we don't # have to do a very expensive (and potentially near infinite) # 'between' calculation, only to find out it will fail. nmax, nmin = date2num((dmax, dmin)) estimate = (nmax - nmin) / (self._get_unit() * self._get_interval()) # This estimate is only an estimate, so be really conservative # about bailing... if estimate > self.MAXTICKS * 2: raise RuntimeError( 'RRuleLocator estimated to generate %d ticks from %s to %s: exceeds Locator.MAXTICKS * 2 (%d) ' % (estimate, dmin, dmax, self.MAXTICKS * 2)) dates = self.rule.between(dmin, dmax, True) if len(dates) == 0: return date2num([dmin, dmax]) return self.raise_if_exceeds(date2num(dates)) def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ freq = self.rule._rrule._freq return self.get_unit_generic(freq) def get_unit_generic(freq): if ( freq == YEARLY ): return 365.0 elif ( freq == MONTHLY ): return 30.0 elif ( freq == WEEKLY ): return 7.0 elif ( freq == DAILY ): return 1.0 elif ( freq == HOURLY ): return (1.0/24.0) elif ( freq == MINUTELY ): return (1.0/(24*60)) elif ( freq == SECONDLY ): return (1.0/(24*3600)) else: # error return -1 #or should this just return '1'? get_unit_generic = staticmethod(get_unit_generic) def _get_interval(self): return self.rule._rrule._interval def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt() if dmin>dmax: dmax, dmin = dmin, dmax delta = relativedelta(dmax, dmin) # We need to cap at the endpoints of valid datetime try: start = dmin - delta except ValueError: start = _from_ordinalf( 1.0 ) try: stop = dmax + delta except ValueError: # The magic number! stop = _from_ordinalf( 3652059.9999999 ) self.rule.set(dtstart=start, until=stop) dmin, dmax = self.datalim_to_dt() vmin = self.rule.before(dmin, True) if not vmin: vmin=dmin vmax = self.rule.after(dmax, True) if not vmax: vmax=dmax vmin = date2num(vmin) vmax = date2num(vmax) return self.nonsingular(vmin, vmax) class AutoDateLocator(DateLocator): """ On autoscale, this class picks the best :class:`MultipleDateLocator` to set the view limits and the tick locations. """ def __init__(self, tz=None, minticks=5, maxticks=None, interval_multiples=False): """ *minticks* is the minimum number of ticks desired, which is used to select the type of ticking (yearly, monthly, etc.). *maxticks* is the maximum number of ticks desired, which controls any interval between ticks (ticking every other, every 3, etc.). For really fine-grained control, this can be a dictionary mapping individual rrule frequency constants (YEARLY, MONTHLY, etc.) to their own maximum number of ticks. This can be used to keep the number of ticks appropriate to the format chosen in class:`AutoDateFormatter`. Any frequency not specified in this dictionary is given a default value. *tz* is a :class:`tzinfo` instance. *interval_multiples* is a boolean that indicates whether ticks should be chosen to be multiple of the interval. This will lock ticks to 'nicer' locations. For example, this will force the ticks to be at hours 0,6,12,18 when hourly ticking is done at 6 hour intervals. The AutoDateLocator has an interval dictionary that maps the frequency of the tick (a constant from dateutil.rrule) and a multiple allowed for that ticking. The default looks like this:: self.intervald = { YEARLY : [1, 2, 4, 5, 10], MONTHLY : [1, 2, 3, 4, 6], DAILY : [1, 2, 3, 7, 14], HOURLY : [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30] } The interval is used to specify multiples that are appropriate for the frequency of ticking. For instance, every 7 days is sensible for daily ticks, but for minutes/seconds, 15 or 30 make sense. You can customize this dictionary by doing:: locator = AutoDateLocator() locator.intervald[HOURLY] = [3] # only show every 3 hours """ DateLocator.__init__(self, tz) self._locator = YearLocator() self._freq = YEARLY self._freqs = [YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY, SECONDLY] self.minticks = minticks self.maxticks = {YEARLY : 16, MONTHLY : 12, DAILY : 11, HOURLY : 16, MINUTELY : 11, SECONDLY : 11} if maxticks is not None: try: self.maxticks.update(maxticks) except TypeError: # Assume we were given an integer. Use this as the maximum # number of ticks for every frequency and create a # dictionary for this self.maxticks = dict(zip(self._freqs, [maxticks]*len(self._freqs))) self.interval_multiples = interval_multiples self.intervald = { YEARLY : [1, 2, 4, 5, 10], MONTHLY : [1, 2, 3, 4, 6], DAILY : [1, 2, 3, 7, 14], HOURLY : [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30] } self._byranges = [None, range(1, 13), range(1, 32), range(0, 24), range(0, 60), range(0, 60)] def __call__(self): 'Return the locations of the ticks' self.refresh() return self._locator() def set_axis(self, axis): DateLocator.set_axis(self, axis) self._locator.set_axis(axis) def refresh(self): 'Refresh internal information based on current limits.' dmin, dmax = self.viewlim_to_dt() self._locator = self.get_locator(dmin, dmax) def _get_unit(self): return RRuleLocator.get_unit_generic(self._freq) def autoscale(self): 'Try to choose the view limits intelligently.' dmin, dmax = self.datalim_to_dt() self._locator = self.get_locator(dmin, dmax) return self._locator.autoscale() def get_locator(self, dmin, dmax): 'Pick the best locator based on a distance.' delta = relativedelta(dmax, dmin) numYears = (delta.years * 1.0) numMonths = (numYears * 12.0) + delta.months numDays = (numMonths * 31.0) + delta.days numHours = (numDays * 24.0) + delta.hours numMinutes = (numHours * 60.0) + delta.minutes numSeconds = (numMinutes * 60.0) + delta.seconds nums = [numYears, numMonths, numDays, numHours, numMinutes, numSeconds] # Default setting of bymonth, etc. to pass to rrule # [unused (for year), bymonth, bymonthday, byhour, byminute, bysecond] byranges = [None, 1, 1, 0, 0, 0] # Loop over all the frequencies and try to find one that gives at # least a minticks tick positions. Once this is found, look for # an interval from an list specific to that frequency that gives no # more than maxticks tick positions. Also, set up some ranges # (bymonth, etc.) as appropriate to be passed to rrulewrapper. for i, (freq, num) in enumerate(zip(self._freqs, nums)): # If this particular frequency doesn't give enough ticks, continue if num < self.minticks: # Since we're not using this particular frequency, set # the corresponding by_ to None so the rrule can act as # appropriate byranges[i] = None continue # Find the first available interval that doesn't give too many ticks for interval in self.intervald[freq]: if num <= interval * (self.maxticks[freq] - 1): break else: # We went through the whole loop without breaking, default to 1 interval = 1 # Set some parameters as appropriate self._freq = freq if self._byranges[i] and self.interval_multiples: byranges[i] = self._byranges[i][::interval] interval = 1 else: byranges[i] = self._byranges[i] # We found what frequency to use break else: # We couldn't find a good frequency. # do what? # microseconds as floats, but floats from what reference point? byranges = [None, 1, 1, 0, 0, 0] interval = 1 unused, bymonth, bymonthday, byhour, byminute, bysecond = byranges del unused rrule = rrulewrapper( self._freq, interval=interval, dtstart=dmin, until=dmax, bymonth=bymonth, bymonthday=bymonthday, byhour=byhour, byminute = byminute, bysecond=bysecond ) locator = RRuleLocator(rrule, self.tz) locator.set_axis(self.axis) locator.set_view_interval(*self.axis.get_view_interval()) locator.set_data_interval(*self.axis.get_data_interval()) return locator class YearLocator(DateLocator): """ Make ticks on a given day of each year that is a multiple of base. Examples:: # Tick every year on Jan 1st locator = YearLocator() # Tick every 5 years on July 4th locator = YearLocator(5, month=7, day=4) """ def __init__(self, base=1, month=1, day=1, tz=None): """ Mark years that are multiple of base on a given month and day (default jan 1). """ DateLocator.__init__(self, tz) self.base = ticker.Base(base) self.replaced = { 'month' : month, 'day' : day, 'hour' : 0, 'minute' : 0, 'second' : 0, 'tzinfo' : tz } def __call__(self): dmin, dmax = self.viewlim_to_dt() ymin = self.base.le(dmin.year) ymax = self.base.ge(dmax.year) ticks = [dmin.replace(year=ymin, **self.replaced)] while 1: dt = ticks[-1] if dt.year>=ymax: return date2num(ticks) year = dt.year + self.base.get_base() ticks.append(dt.replace(year=year, **self.replaced)) def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt() ymin = self.base.le(dmin.year) ymax = self.base.ge(dmax.year) vmin = dmin.replace(year=ymin, **self.replaced) vmax = dmax.replace(year=ymax, **self.replaced) vmin = date2num(vmin) vmax = date2num(vmax) return self.nonsingular(vmin, vmax) class MonthLocator(RRuleLocator): """ Make ticks on occurances of each month month, eg 1, 3, 12. """ def __init__(self, bymonth=None, bymonthday=1, interval=1, tz=None): """ Mark every month in *bymonth*; *bymonth* can be an int or sequence. Default is ``range(1,13)``, i.e. every month. *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurance. """ if bymonth is None: bymonth=range(1,13) o = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, o, tz) class WeekdayLocator(RRuleLocator): """ Make ticks on occurances of each weekday. """ def __init__(self, byweekday=1, interval=1, tz=None): """ Mark every weekday in *byweekday*; *byweekday* can be a number or sequence. Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA, SU, the constants from :mod:`dateutils.rrule`. *interval* specifies the number of weeks to skip. For example, ``interval=2`` plots every second week. """ o = rrulewrapper(DAILY, byweekday=byweekday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, o, tz) class DayLocator(RRuleLocator): """ Make ticks on occurances of each day of the month. For example, 1, 15, 30. """ def __init__(self, bymonthday=None, interval=1, tz=None): """ Mark every day in *bymonthday*; *bymonthday* can be an int or sequence. Default is to tick every day of the month: ``bymonthday=range(1,32)`` """ if bymonthday is None: bymonthday=range(1,32) o = rrulewrapper(DAILY, bymonthday=bymonthday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, o, tz) class HourLocator(RRuleLocator): """ Make ticks on occurances of each hour. """ def __init__(self, byhour=None, interval=1, tz=None): """ Mark every hour in *byhour*; *byhour* can be an int or sequence. Default is to tick every hour: ``byhour=range(24)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if byhour is None: byhour=range(24) rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval, byminute=0, bysecond=0) RRuleLocator.__init__(self, rule, tz) class MinuteLocator(RRuleLocator): """ Make ticks on occurances of each minute. """ def __init__(self, byminute=None, interval=1, tz=None): """ Mark every minute in *byminute*; *byminute* can be an int or sequence. Default is to tick every minute: ``byminute=range(60)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if byminute is None: byminute=range(60) rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval, bysecond=0) RRuleLocator.__init__(self, rule, tz) class SecondLocator(RRuleLocator): """ Make ticks on occurances of each second. """ def __init__(self, bysecond=None, interval=1, tz=None): """ Mark every second in *bysecond*; *bysecond* can be an int or sequence. Default is to tick every second: ``bysecond = range(60)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if bysecond is None: bysecond=range(60) rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval) RRuleLocator.__init__(self, rule, tz) def _close_to_dt(d1, d2, epsilon=5): 'Assert that datetimes *d1* and *d2* are within *epsilon* microseconds.' delta = d2-d1 mus = abs(delta.days*MUSECONDS_PER_DAY + delta.seconds*1e6 + delta.microseconds) assert(mus<epsilon) def _close_to_num(o1, o2, epsilon=5): 'Assert that float ordinals *o1* and *o2* are within *epsilon* microseconds.' delta = abs((o2-o1)*MUSECONDS_PER_DAY) assert(delta<epsilon) def epoch2num(e): """ Convert an epoch or sequence of epochs to the new date format, that is days since 0001. """ spd = 24.*3600. return 719163 + np.asarray(e)/spd def num2epoch(d): """ Convert days since 0001 to epoch. *d* can be a number or sequence. """ spd = 24.*3600. return (np.asarray(d)-719163)*spd def mx2num(mxdates): """ Convert mx :class:`datetime` instance (or sequence of mx instances) to the new date format. """ scalar = False if not cbook.iterable(mxdates): scalar = True mxdates = [mxdates] ret = epoch2num([m.ticks() for m in mxdates]) if scalar: return ret[0] else: return ret def date_ticker_factory(span, tz=None, numticks=5): """ Create a date locator with *numticks* (approx) and a date formatter for *span* in days. Return value is (locator, formatter). """ if span==0: span = 1/24. minutes = span*24*60 hours = span*24 days = span weeks = span/7. months = span/31. # approx years = span/365. if years>numticks: locator = YearLocator(int(years/numticks), tz=tz) # define fmt = '%Y' elif months>numticks: locator = MonthLocator(tz=tz) fmt = '%b %Y' elif weeks>numticks: locator = WeekdayLocator(tz=tz) fmt = '%a, %b %d' elif days>numticks: locator = DayLocator(interval=int(math.ceil(days/numticks)), tz=tz) fmt = '%b %d' elif hours>numticks: locator = HourLocator(interval=int(math.ceil(hours/numticks)), tz=tz) fmt = '%H:%M\n%b %d' elif minutes>numticks: locator = MinuteLocator(interval=int(math.ceil(minutes/numticks)), tz=tz) fmt = '%H:%M:%S' else: locator = MinuteLocator(tz=tz) fmt = '%H:%M:%S' formatter = DateFormatter(fmt, tz=tz) return locator, formatter def seconds(s): 'Return seconds as days.' return float(s)/SEC_PER_DAY def minutes(m): 'Return minutes as days.' return float(m)/MINUTES_PER_DAY def hours(h): 'Return hours as days.' return h/24. def weeks(w): 'Return weeks as days.' return w*7. class DateConverter(units.ConversionInterface): """ Converter for datetime.date and datetime.datetime data, or for date/time data represented as it would be converted by :func:`date2num`. The 'unit' tag for such data is None or a tzinfo instance. """ @staticmethod def axisinfo(unit, axis): """ Return the :class:`~matplotlib.units.AxisInfo` for *unit*. *unit* is a tzinfo instance or None. The *axis* argument is required but not used. """ tz = unit majloc = AutoDateLocator(tz=tz) majfmt = AutoDateFormatter(majloc, tz=tz) datemin = datetime.date(2000, 1, 1) datemax = datetime.date(2010, 1, 1) return units.AxisInfo( majloc=majloc, majfmt=majfmt, label='', default_limits=(datemin, datemax)) @staticmethod def convert(value, unit, axis): """ If *value* is not already a number or sequence of numbers, convert it with :func:`date2num`. The *unit* and *axis* arguments are not used. """ if units.ConversionInterface.is_numlike(value): return value return date2num(value) @staticmethod def default_units(x, axis): 'Return the tzinfo instance of *x* or of its first element, or None' try: x = x[0] except (TypeError, IndexError): pass try: return x.tzinfo except AttributeError: pass return None units.registry[datetime.date] = DateConverter() units.registry[datetime.datetime] = DateConverter() if __name__=='__main__': #tz = None tz = pytz.timezone('US/Pacific') #tz = UTC dt = datetime.datetime(1011, 10, 9, 13, 44, 22, 101010, tzinfo=tz) x = date2num(dt) _close_to_dt(dt, num2date(x, tz)) #tz = _get_rc_timezone() d1 = datetime.datetime( 2000, 3, 1, tzinfo=tz) d2 = datetime.datetime( 2000, 3, 5, tzinfo=tz) #d1 = datetime.datetime( 2002, 1, 5, tzinfo=tz) #d2 = datetime.datetime( 2003, 12, 1, tzinfo=tz) delta = datetime.timedelta(hours=6) dates = drange(d1, d2, delta) # MGDTODO: Broken on transforms branch #print 'orig', d1 #print 'd2n and back', num2date(date2num(d1), tz) from _transforms import Value, Interval v1 = Value(date2num(d1)) v2 = Value(date2num(d2)) dlim = Interval(v1,v2) vlim = Interval(v1,v2) #locator = HourLocator(byhour=(3,15), tz=tz) #locator = MinuteLocator(byminute=(15,30,45), tz=tz) #locator = YearLocator(base=5, month=7, day=4, tz=tz) #locator = MonthLocator(bymonthday=15) locator = DayLocator(tz=tz) locator.set_data_interval(dlim) locator.set_view_interval(vlim) dmin, dmax = locator.autoscale() vlim.set_bounds(dmin, dmax) ticks = locator() fmt = '%Y-%m-%d %H:%M:%S %Z' formatter = DateFormatter(fmt, tz) #for t in ticks: print formatter(t) for t in dates: print formatter(t)