D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
opt
/
alt
/
python27
/
lib64
/
python2.7
/
site-packages
/
matplotlib
/
Filename :
finance.py
back
Copy
""" A collection of modules for collecting, analyzing and plotting financial data. User contributions welcome! """ #from __future__ import division import os, warnings from urllib2 import urlopen try: from hashlib import md5 except ImportError: from md5 import md5 #Deprecated in 2.5 import datetime import numpy as np from matplotlib import verbose, get_configdir from matplotlib.dates import date2num from matplotlib.cbook import iterable from matplotlib.collections import LineCollection, PolyCollection from matplotlib.colors import colorConverter from matplotlib.lines import Line2D, TICKLEFT, TICKRIGHT from matplotlib.patches import Rectangle from matplotlib.transforms import Affine2D configdir = get_configdir() cachedir = os.path.join(configdir, 'finance.cache') stock_dt = np.dtype([('date', object), ('year', np.int16), ('month', np.int8), ('day', np.int8), ('d', np.float), # mpl datenum ('open', np.float), ('close', np.float), ('high', np.float), ('low', np.float), ('volume', np.float), ('aclose', np.float)]) def parse_yahoo_historical(fh, adjusted=True, asobject=False): """ Parse the historical data in file handle fh from yahoo finance. *adjusted* If True (default) replace open, close, high, and low prices with their adjusted values. The adjustment is by a scale factor, S = adjusted_close/close. Adjusted prices are actual prices multiplied by S. Volume is not adjusted as it is already backward split adjusted by Yahoo. If you want to compute dollars traded, multiply volume by the adjusted close, regardless of whether you choose adjusted = True|False. *asobject* If False (default for compatibility with earlier versions) return a list of tuples containing d, open, close, high, low, volume If None (preferred alternative to False), return a 2-D ndarray corresponding to the list of tuples. Otherwise return a numpy recarray with date, year, month, day, d, open, close, high, low, volume, adjusted_close where d is a floating poing representation of date, as returned by date2num, and date is a python standard library datetime.date instance. The name of this kwarg is a historical artifact. Formerly, True returned a cbook Bunch holding 1-D ndarrays. The behavior of a numpy recarray is very similar to the Bunch. """ lines = fh.readlines() results = [] datefmt = '%Y-%m-%d' for line in lines[1:]: vals = line.split(',') if len(vals)!=7: continue # add warning? datestr = vals[0] #dt = datetime.date(*time.strptime(datestr, datefmt)[:3]) # Using strptime doubles the runtime. With the present # format, we don't need it. dt = datetime.date(*[int(val) for val in datestr.split('-')]) dnum = date2num(dt) open, high, low, close = [float(val) for val in vals[1:5]] volume = float(vals[5]) aclose = float(vals[6]) results.append((dt, dt.year, dt.month, dt.day, dnum, open, close, high, low, volume, aclose)) results.reverse() d = np.array(results, dtype=stock_dt) if adjusted: scale = d['aclose'] / d['close'] scale[np.isinf(scale)] = np.nan d['open'] *= scale d['close'] *= scale d['high'] *= scale d['low'] *= scale if not asobject: # 2-D sequence; formerly list of tuples, now ndarray ret = np.zeros((len(d), 6), dtype=np.float) ret[:,0] = d['d'] ret[:,1] = d['open'] ret[:,2] = d['close'] ret[:,3] = d['high'] ret[:,4] = d['low'] ret[:,5] = d['volume'] if asobject is None: return ret return [tuple(row) for row in ret] return d.view(np.recarray) # Close enough to former Bunch return def fetch_historical_yahoo(ticker, date1, date2, cachename=None): """ Fetch historical data for ticker between date1 and date2. date1 and date2 are date or datetime instances, or (year, month, day) sequences. Ex: fh = fetch_historical_yahoo('^GSPC', (2000, 1, 1), (2001, 12, 31)) cachename is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) a file handle is returned """ ticker = ticker.upper() if iterable(date1): d1 = (date1[1]-1, date1[2], date1[0]) else: d1 = (date1.month-1, date1.day, date1.year) if iterable(date2): d2 = (date2[1]-1, date2[2], date2[0]) else: d2 = (date2.month-1, date2.day, date2.year) urlFmt = 'http://table.finance.yahoo.com/table.csv?a=%d&b=%d&c=%d&d=%d&e=%d&f=%d&s=%s&y=0&g=d&ignore=.csv' url = urlFmt % (d1[0], d1[1], d1[2], d2[0], d2[1], d2[2], ticker) if cachename is None: cachename = os.path.join(cachedir, md5(url).hexdigest()) if os.path.exists(cachename): fh = file(cachename) verbose.report('Using cachefile %s for %s'%(cachename, ticker)) else: if not os.path.isdir(cachedir): os.mkdir(cachedir) urlfh = urlopen(url) fh = file(cachename, 'w') fh.write(urlfh.read()) fh.close() verbose.report('Saved %s data to cache file %s'%(ticker, cachename)) fh = file(cachename, 'r') return fh def quotes_historical_yahoo(ticker, date1, date2, asobject=False, adjusted=True, cachename=None): """ Get historical data for ticker between date1 and date2. date1 and date2 are datetime instances or (year, month, day) sequences. See :func:`parse_yahoo_historical` for explanation of output formats and the *asobject* and *adjusted* kwargs. Ex: sp = f.quotes_historical_yahoo('^GSPC', d1, d2, asobject=True, adjusted=True) returns = (sp.open[1:] - sp.open[:-1])/sp.open[1:] [n,bins,patches] = hist(returns, 100) mu = mean(returns) sigma = std(returns) x = normpdf(bins, mu, sigma) plot(bins, x, color='red', lw=2) cachename is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) """ # Maybe enable a warning later as part of a slow transition # to using None instead of False. #if asobject is False: # warnings.warn("Recommend changing to asobject=None") fh = fetch_historical_yahoo(ticker, date1, date2, cachename) try: ret = parse_yahoo_historical(fh, asobject=asobject, adjusted=adjusted) if len(ret) == 0: return None except IOError, exc: warnings.warn('fh failure\n%s'%(exc.strerror[1])) return None return ret def plot_day_summary(ax, quotes, ticksize=3, colorup='k', colordown='r', ): """ quotes is a sequence of (time, open, close, high, low, ...) sequences Represent the time, open, close, high, low as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. time must be in float date format - see date2num ax : an Axes instance to plot to ticksize : open/close tick marker in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open return value is a list of lines added """ lines = [] for q in quotes: t, open, close, high, low = q[:5] if close>=open : color = colorup else : color = colordown vline = Line2D( xdata=(t, t), ydata=(low, high), color=color, antialiased=False, # no need to antialias vert lines ) oline = Line2D( xdata=(t, t), ydata=(open, open), color=color, antialiased=False, marker=TICKLEFT, markersize=ticksize, ) cline = Line2D( xdata=(t, t), ydata=(close, close), color=color, antialiased=False, markersize=ticksize, marker=TICKRIGHT) lines.extend((vline, oline, cline)) ax.add_line(vline) ax.add_line(oline) ax.add_line(cline) ax.autoscale_view() return lines def candlestick(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0): """ quotes is a sequence of (time, open, close, high, low, ...) sequences. As long as the first 5 elements are these values, the record can be as long as you want (eg it may store volume). time must be in float days format - see date2num Plot the time, open, close, high, low as a vertical line ranging from low to high. Use a rectangular bar to represent the open-close span. If close >= open, use colorup to color the bar, otherwise use colordown ax : an Axes instance to plot to width : fraction of a day for the rectangle width colorup : the color of the rectangle where close >= open colordown : the color of the rectangle where close < open alpha : the rectangle alpha level return value is lines, patches where lines is a list of lines added and patches is a list of the rectangle patches added """ OFFSET = width/2.0 lines = [] patches = [] for q in quotes: t, open, close, high, low = q[:5] if close>=open : color = colorup lower = open height = close-open else : color = colordown lower = close height = open-close vline = Line2D( xdata=(t, t), ydata=(low, high), color='k', linewidth=0.5, antialiased=True, ) rect = Rectangle( xy = (t-OFFSET, lower), width = width, height = height, facecolor = color, edgecolor = color, ) rect.set_alpha(alpha) lines.append(vline) patches.append(rect) ax.add_line(vline) ax.add_patch(rect) ax.autoscale_view() return lines, patches def plot_day_summary2(ax, opens, closes, highs, lows, ticksize=4, colorup='k', colordown='r', ): """ Represent the time, open, close, high, low as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. ax : an Axes instance to plot to ticksize : size of open and close ticks in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open return value is a list of lines added """ # note this code assumes if any value open, close, low, high is # missing they all are missing rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ] # the ticks will be from ticksize to 0 in points at the origin and # we'll translate these to the i, close location openSegments = [ ((-ticksize, 0), (0, 0)) ] # the ticks will be from 0 to ticksize in points at the origin and # we'll translate these to the i, close location closeSegments = [ ((0, 0), (ticksize, 0)) ] offsetsOpen = [ (i, open) for i, open in zip(xrange(len(opens)), opens) if open != -1 ] offsetsClose = [ (i, close) for i, close in zip(xrange(len(closes)), closes) if close != -1 ] scale = ax.figure.dpi * (1.0/72.0) tickTransform = Affine2D().scale(scale, 0.0) r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,1 r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,1 colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] assert(len(rangeSegments)==len(offsetsOpen)) assert(len(offsetsOpen)==len(offsetsClose)) assert(len(offsetsClose)==len(colors)) useAA = 0, # use tuple here lw = 1, # and here rangeCollection = LineCollection(rangeSegments, colors = colors, linewidths = lw, antialiaseds = useAA, ) openCollection = LineCollection(openSegments, colors = colors, antialiaseds = useAA, linewidths = lw, offsets = offsetsOpen, transOffset = ax.transData, ) openCollection.set_transform(tickTransform) closeCollection = LineCollection(closeSegments, colors = colors, antialiaseds = useAA, linewidths = lw, offsets = offsetsClose, transOffset = ax.transData, ) closeCollection.set_transform(tickTransform) minpy, maxx = (0, len(rangeSegments)) miny = min([low for low in lows if low !=-1]) maxy = max([high for high in highs if high != -1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(rangeCollection) ax.add_collection(openCollection) ax.add_collection(closeCollection) return rangeCollection, openCollection, closeCollection def candlestick2(ax, opens, closes, highs, lows, width=4, colorup='k', colordown='r', alpha=0.75, ): """ Represent the open, close as a bar line and high low range as a vertical line. ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency return value is lineCollection, barCollection """ # note this code assumes if any value open, close, low, high is # missing they all are missing delta = width/2. barVerts = [ ( (i-delta, open), (i-delta, close), (i+delta, close), (i+delta, open) ) for i, open, close in zip(xrange(len(opens)), opens, closes) if open != -1 and close!=-1 ] rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ] r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] assert(len(barVerts)==len(rangeSegments)) useAA = 0, # use tuple here lw = 0.5, # and here rangeCollection = LineCollection(rangeSegments, colors = ( (0,0,0,1), ), linewidths = lw, antialiaseds = useAA, ) barCollection = PolyCollection(barVerts, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = useAA, linewidths = lw, ) minx, maxx = 0, len(rangeSegments) miny = min([low for low in lows if low !=-1]) maxy = max([high for high in highs if high != -1]) corners = (minx, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(barCollection) ax.add_collection(rangeCollection) return rangeCollection, barCollection def volume_overlay(ax, opens, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. The opens and closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency """ r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] delta = width/2. bars = [ ( (i-delta, 0), (i-delta, v), (i+delta, v), (i+delta, 0)) for i, v in enumerate(volumes) if v != -1 ] barCollection = PolyCollection(bars, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = (0,), linewidths = (0.5,), ) corners = (0, 0), (len(bars), max(volumes)) ax.update_datalim(corners) ax.autoscale_view() # add these last return barCollection def volume_overlay2(ax, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. The closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency nb: first point is not displayed - it is used only for choosing the right color """ return volume_overlay(ax,closes[:-1],closes[1:],volumes[1:],colorup,colordown,width,alpha) def volume_overlay3(ax, quotes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. quotes is a list of (d, open, close, high, low, volume) and close-open is used to determine the color of the bar kwarg width : the bar width in points colorup : the color of the lines where close1 >= close0 colordown : the color of the lines where close1 < close0 alpha : bar transparency """ r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } dates, opens, closes, highs, lows, volumes = zip(*quotes) colors = [colord[close1>=close0] for close0, close1 in zip(closes[:-1], closes[1:]) if close0!=-1 and close1 !=-1] colors.insert(0,colord[closes[0]>=opens[0]]) right = width/2.0 left = -width/2.0 bars = [ ( (left, 0), (left, volume), (right, volume), (right, 0)) for d, open, close, high, low, volume in quotes] sx = ax.figure.dpi * (1.0/72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx,sy) dates = [d for d, open, close, high, low, volume in quotes] offsetsBars = [(d, 0) for d in dates] useAA = 0, # use tuple here lw = 0.5, # and here barCollection = PolyCollection(bars, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = useAA, linewidths = lw, offsets = offsetsBars, transOffset = ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (min(dates), max(dates)) miny = 0 maxy = max([volume for d, open, close, high, low, volume in quotes]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) #print 'datalim', ax.dataLim.bounds #print 'viewlim', ax.viewLim.bounds ax.add_collection(barCollection) ax.autoscale_view() return barCollection def index_bar(ax, vals, facecolor='b', edgecolor='l', width=4, alpha=1.0, ): """ Add a bar collection graph with height vals (-1 is missing). ax : an Axes instance to plot to width : the bar width in points alpha : bar transparency """ facecolors = (colorConverter.to_rgba(facecolor, alpha),) edgecolors = (colorConverter.to_rgba(edgecolor, alpha),) right = width/2.0 left = -width/2.0 bars = [ ( (left, 0), (left, v), (right, v), (right, 0)) for v in vals if v != -1 ] sx = ax.figure.dpi * (1.0/72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx,sy) offsetsBars = [ (i, 0) for i,v in enumerate(vals) if v != -1 ] barCollection = PolyCollection(bars, facecolors = facecolors, edgecolors = edgecolors, antialiaseds = (0,), linewidths = (0.5,), offsets = offsetsBars, transOffset = ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (0, len(offsetsBars)) miny = 0 maxy = max([v for v in vals if v!=-1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(barCollection) return barCollection