D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
opt
/
alt
/
python27
/
lib64
/
python2.7
/
site-packages
/
matplotlib
/
Filename :
pyplot.py
back
Copy
""" Provides a MATLAB-like plotting framework. :mod:`~matplotlib.pylab` combines pyplot with numpy into a single namespace. This is convenient for interactive work, but for programming it is recommended that the namespaces be kept separate, e.g.:: import numpy as np import matplotlib.pyplot as plt x = np.arange(0, 5, 0.1); y = np.sin(x) plt.plot(x, y) """ import sys import matplotlib from matplotlib import _pylab_helpers, interactive from matplotlib.cbook import dedent, silent_list, is_string_like, is_numlike from matplotlib import docstring from matplotlib.figure import Figure, figaspect from matplotlib.backend_bases import FigureCanvasBase from matplotlib.image import imread as _imread from matplotlib.image import imsave as _imsave from matplotlib import rcParams, rcParamsDefault, get_backend from matplotlib.rcsetup import interactive_bk as _interactive_bk from matplotlib.artist import getp, get, Artist from matplotlib.artist import setp as _setp from matplotlib.axes import Axes, Subplot, _string_to_bool from matplotlib.projections import PolarAxes from matplotlib import mlab # for csv2rec, detrend_none, window_hanning from matplotlib.scale import get_scale_docs, get_scale_names from matplotlib import cm from matplotlib.cm import get_cmap, register_cmap import numpy as np # We may not need the following imports here: from matplotlib.colors import Normalize, normalize # latter for backwards compat. from matplotlib.lines import Line2D from matplotlib.text import Text, Annotation from matplotlib.patches import Polygon, Rectangle, Circle, Arrow from matplotlib.widgets import SubplotTool, Button, Slider, Widget from ticker import TickHelper, Formatter, FixedFormatter, NullFormatter,\ FuncFormatter, FormatStrFormatter, ScalarFormatter,\ LogFormatter, LogFormatterExponent, LogFormatterMathtext,\ Locator, IndexLocator, FixedLocator, NullLocator,\ LinearLocator, LogLocator, AutoLocator, MultipleLocator,\ MaxNLocator ## Backend detection ## def _backend_selection(): """ If rcParams['backend_fallback'] is true, check to see if the current backend is compatible with the current running event loop, and if not switches to a compatible one. """ backend = rcParams['backend'] if not rcParams['backend_fallback'] or \ backend not in _interactive_bk: return is_agg_backend = rcParams['backend'].endswith('Agg') if 'wx' in sys.modules and not backend in ('WX', 'WXAgg'): import wx if wx.App.IsMainLoopRunning(): rcParams['backend'] = 'wx' + 'Agg' * is_agg_backend elif 'qt' in sys.modules and not backend == 'QtAgg': import qt if not qt.qApp.startingUp(): # The mainloop is running. rcParams['backend'] = 'qtAgg' elif 'PyQt4.QtCore' in sys.modules and not backend == 'Qt4Agg': import PyQt4.QtGui if not PyQt4.QtGui.qApp.startingUp(): # The mainloop is running. rcParams['backend'] = 'qt4Agg' elif 'gtk' in sys.modules and not backend in ('GTK', 'GTKAgg', 'GTKCairo'): import gobject if gobject.MainLoop().is_running(): rcParams['backend'] = 'gtk' + 'Agg' * is_agg_backend elif 'Tkinter' in sys.modules and not backend == 'TkAgg': #import Tkinter pass #what if anything do we need to do for tkinter? _backend_selection() ## Global ## from matplotlib.backends import pylab_setup new_figure_manager, draw_if_interactive, show = pylab_setup() @docstring.copy_dedent(Artist.findobj) def findobj(o=None, match=None): if o is None: o = gcf() return o.findobj(match) def switch_backend(newbackend): """ Switch the default backend to newbackend. This feature is **experimental**, and is only expected to work switching to an image backend. Eg, if you have a bunch of PostScript scripts that you want to run from an interactive ipython session, you may want to switch to the PS backend before running them to avoid having a bunch of GUI windows popup. If you try to interactively switch from one GUI backend to another, you will explode. Calling this command will close all open windows. """ close('all') global new_figure_manager, draw_if_interactive, show matplotlib.use(newbackend, warn=False) reload(matplotlib.backends) from matplotlib.backends import pylab_setup new_figure_manager, draw_if_interactive, show = pylab_setup() def isinteractive(): """ Return the interactive status """ return matplotlib.is_interactive() def ioff(): 'Turn interactive mode off.' matplotlib.interactive(False) def ion(): 'Turn interactive mode on.' matplotlib.interactive(True) @docstring.copy_dedent(matplotlib.rc) def rc(*args, **kwargs): matplotlib.rc(*args, **kwargs) @docstring.copy_dedent(matplotlib.rcdefaults) def rcdefaults(): matplotlib.rcdefaults() draw_if_interactive() # The current "image" (ScalarMappable) is retrieved or set # only via the pyplot interface using the following two # functions: def gci(): """ Get the current :class:`~matplotlib.cm.ScalarMappable` instance (image or patch collection), or *None* if no images or patch collections have been defined. The commands :func:`~matplotlib.pyplot.imshow` and :func:`~matplotlib.pyplot.figimage` create :class:`~matplotlib.image.Image` instances, and the commands :func:`~matplotlib.pyplot.pcolor` and :func:`~matplotlib.pyplot.scatter` create :class:`~matplotlib.collections.Collection` instances. The current image is an attribute of the current axes, or the nearest earlier axes in the current figure that contains an image. """ return gcf()._gci() def sci(im): """ Set the current image (target of colormap commands like :func:`~matplotlib.pyplot.jet`, :func:`~matplotlib.pyplot.hot` or :func:`~matplotlib.pyplot.clim`). The current image is an attribute of the current axes. """ gca()._sci(im) ## Any Artist ## # (getp is simply imported) @docstring.copy(_setp) def setp(*args, **kwargs): ret = _setp(*args, **kwargs) draw_if_interactive() return ret ## Figures ## def figure(num=None, # autoincrement if None, else integer from 1-N figsize = None, # defaults to rc figure.figsize dpi = None, # defaults to rc figure.dpi facecolor = None, # defaults to rc figure.facecolor edgecolor = None, # defaults to rc figure.edgecolor frameon = True, FigureClass = Figure, **kwargs ): """ call signature:: figure(num=None, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k') Create a new figure and return a :class:`matplotlib.figure.Figure` instance. If *num* = *None*, the figure number will be incremented and a new figure will be created. The returned figure objects have a *number* attribute holding this number. If *num* is an integer, and ``figure(num)`` already exists, make it active and return a reference to it. If ``figure(num)`` does not exist it will be created. Numbering starts at 1, MATLAB style:: figure(1) If you are creating many figures, make sure you explicitly call "close" on the figures you are not using, because this will enable pylab to properly clean up the memory. Optional keyword arguments: ========= ======================================================= Keyword Description ========= ======================================================= figsize width x height in inches; defaults to rc figure.figsize dpi resolution; defaults to rc figure.dpi facecolor the background color; defaults to rc figure.facecolor edgecolor the border color; defaults to rc figure.edgecolor ========= ======================================================= rcParams defines the default values, which can be modified in the matplotlibrc file *FigureClass* is a :class:`~matplotlib.figure.Figure` or derived class that will be passed on to :meth:`new_figure_manager` in the backends which allows you to hook custom Figure classes into the pylab interface. Additional kwargs will be passed on to your figure init function. """ if figsize is None : figsize = rcParams['figure.figsize'] if dpi is None : dpi = rcParams['figure.dpi'] if facecolor is None : facecolor = rcParams['figure.facecolor'] if edgecolor is None : edgecolor = rcParams['figure.edgecolor'] if num is None: allnums = [f.num for f in _pylab_helpers.Gcf.get_all_fig_managers()] if allnums: num = max(allnums) + 1 else: num = 1 else: num = int(num) # crude validation of num argument figManager = _pylab_helpers.Gcf.get_fig_manager(num) if figManager is None: if get_backend().lower() == 'ps': dpi = 72 figManager = new_figure_manager(num, figsize=figsize, dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, frameon=frameon, FigureClass=FigureClass, **kwargs) # make this figure current on button press event def make_active(event): _pylab_helpers.Gcf.set_active(figManager) cid = figManager.canvas.mpl_connect('button_press_event', make_active) figManager._cidgcf = cid _pylab_helpers.Gcf.set_active(figManager) figManager.canvas.figure.number = num draw_if_interactive() return figManager.canvas.figure def gcf(): "Return a reference to the current figure." figManager = _pylab_helpers.Gcf.get_active() if figManager is not None: return figManager.canvas.figure else: return figure() fignum_exists = _pylab_helpers.Gcf.has_fignum def get_fignums(): "Return a list of existing figure numbers." fignums = _pylab_helpers.Gcf.figs.keys() fignums.sort() return fignums def get_current_fig_manager(): figManager = _pylab_helpers.Gcf.get_active() if figManager is None: gcf() # creates an active figure as a side effect figManager = _pylab_helpers.Gcf.get_active() return figManager @docstring.copy_dedent(FigureCanvasBase.mpl_connect) def connect(s, func): return get_current_fig_manager().canvas.mpl_connect(s, func) @docstring.copy_dedent(FigureCanvasBase.mpl_disconnect) def disconnect(cid): return get_current_fig_manager().canvas.mpl_disconnect(cid) def close(*args): """ Close a figure window ``close()`` by itself closes the current figure ``close(num)`` closes figure number *num* ``close(h)`` where *h* is a :class:`Figure` instance, closes that figure ``close('all')`` closes all the figure windows """ if len(args)==0: figManager = _pylab_helpers.Gcf.get_active() if figManager is None: return else: _pylab_helpers.Gcf.destroy(figManager.num) elif len(args)==1: arg = args[0] if arg=='all': _pylab_helpers.Gcf.destroy_all() elif isinstance(arg, int): _pylab_helpers.Gcf.destroy(arg) elif isinstance(arg, Figure): _pylab_helpers.Gcf.destroy_fig(arg) else: raise TypeError('Unrecognized argument type %s to close'%type(arg)) else: raise TypeError('close takes 0 or 1 arguments') def clf(): """ Clear the current figure """ gcf().clf() draw_if_interactive() def draw(): 'redraw the current figure' get_current_fig_manager().canvas.draw() @docstring.copy_dedent(Figure.savefig) def savefig(*args, **kwargs): fig = gcf() return fig.savefig(*args, **kwargs) @docstring.copy_dedent(Figure.ginput) def ginput(*args, **kwargs): """ Blocking call to interact with the figure. This will wait for *n* clicks from the user and return a list of the coordinates of each click. If *timeout* is negative, does not timeout. """ return gcf().ginput(*args, **kwargs) @docstring.copy_dedent(Figure.waitforbuttonpress) def waitforbuttonpress(*args, **kwargs): """ Blocking call to interact with the figure. This will wait for *n* key or mouse clicks from the user and return a list containing True's for keyboard clicks and False's for mouse clicks. If *timeout* is negative, does not timeout. """ return gcf().waitforbuttonpress(*args, **kwargs) # Putting things in figures @docstring.copy_dedent(Figure.text) def figtext(*args, **kwargs): ret = gcf().text(*args, **kwargs) draw_if_interactive() return ret @docstring.copy_dedent(Figure.suptitle) def suptitle(*args, **kwargs): ret = gcf().suptitle(*args, **kwargs) draw_if_interactive() return ret @docstring.Appender("Addition kwargs: hold = [True|False] overrides default hold state", "\n") @docstring.copy_dedent(Figure.figimage) def figimage(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False ret = gcf().figimage(*args, **kwargs) draw_if_interactive() #sci(ret) # JDH figimage should not set current image -- it is not mappable, etc return ret def figlegend(handles, labels, loc, **kwargs): """ Place a legend in the figure. *labels* a sequence of strings *handles* a sequence of :class:`~matplotlib.lines.Line2D` or :class:`~matplotlib.patches.Patch` instances *loc* can be a string or an integer specifying the legend location A :class:`matplotlib.legend.Legend` instance is returned. Example:: figlegend( (line1, line2, line3), ('label1', 'label2', 'label3'), 'upper right' ) .. seealso:: :func:`~matplotlib.pyplot.legend` """ l = gcf().legend(handles, labels, loc, **kwargs) draw_if_interactive() return l ## Figure and Axes hybrid ## def hold(b=None): """ Set the hold state. If *b* is None (default), toggle the hold state, else set the hold state to boolean value *b*:: hold() # toggle hold hold(True) # hold is on hold(False) # hold is off When *hold* is *True*, subsequent plot commands will be added to the current axes. When *hold* is *False*, the current axes and figure will be cleared on the next plot command. """ fig = gcf() ax = fig.gca() fig.hold(b) ax.hold(b) # b=None toggles the hold state, so let's get get the current hold # state; but should pyplot hold toggle the rc setting - me thinks # not b = ax.ishold() rc('axes', hold=b) def ishold(): """ Return the hold status of the current axes """ return gca().ishold() def over(func, *args, **kwargs): """ over calls:: func(*args, **kwargs) with ``hold(True)`` and then restores the hold state. """ h = ishold() hold(True) func(*args, **kwargs) hold(h) ## Axes ## def axes(*args, **kwargs): """ Add an axes at position rect specified by: - ``axes()`` by itself creates a default full ``subplot(111)`` window axis. - ``axes(rect, axisbg='w')`` where *rect* = [left, bottom, width, height] in normalized (0, 1) units. *axisbg* is the background color for the axis, default white. - ``axes(h)`` where *h* is an axes instance makes *h* the current axis. An :class:`~matplotlib.axes.Axes` instance is returned. ======= ============ ================================================ kwarg Accepts Desctiption ======= ============ ================================================ axisbg color the axes background color frameon [True|False] display the frame? sharex otherax current axes shares xaxis attribute with otherax sharey otherax current axes shares yaxis attribute with otherax polar [True|False] use a polar axes? ======= ============ ================================================ Examples: * :file:`examples/pylab_examples/axes_demo.py` places custom axes. * :file:`examples/pylab_examples/shared_axis_demo.py` uses *sharex* and *sharey*. """ nargs = len(args) if len(args)==0: return subplot(111, **kwargs) if nargs>1: raise TypeError('Only one non keyword arg to axes allowed') arg = args[0] if isinstance(arg, Axes): a = gcf().sca(arg) else: rect = arg a = gcf().add_axes(rect, **kwargs) draw_if_interactive() return a def delaxes(*args): """ ``delaxes(ax)``: remove *ax* from the current figure. If *ax* doesn't exist, an error will be raised. ``delaxes()``: delete the current axes """ if not len(args): ax = gca() else: ax = args[0] ret = gcf().delaxes(ax) draw_if_interactive() return ret def sca(ax): """ Set the current Axes instance to *ax*. The current Figure is updated to the parent of *ax*. """ managers = _pylab_helpers.Gcf.get_all_fig_managers() for m in managers: if ax in m.canvas.figure.axes: _pylab_helpers.Gcf.set_active(m) m.canvas.figure.sca(ax) return raise ValueError("Axes instance argument was not found in a figure.") def gca(**kwargs): """ Return the current axis instance. This can be used to control axis properties either using set or the :class:`~matplotlib.axes.Axes` methods, for example, setting the xaxis range:: plot(t,s) set(gca(), 'xlim', [0,10]) or:: plot(t,s) a = gca() a.set_xlim([0,10]) """ ax = gcf().gca(**kwargs) return ax # More ways of creating axes: def subplot(*args, **kwargs): """ Create a subplot command, creating axes with:: subplot(numRows, numCols, plotNum) where *plotNum* = 1 is the first plot number and increasing *plotNums* fill rows first. max(*plotNum*) == *numRows* * *numCols* You can leave out the commas if *numRows* <= *numCols* <= *plotNum* < 10, as in:: subplot(211) # 2 rows, 1 column, first (upper) plot ``subplot(111)`` is the default axis. New subplots that overlap old will delete the old axes. If you do not want this behavior, use :meth:`matplotlib.figure.Figure.add_subplot` or the :func:`~matplotlib.pyplot.axes` command. Eg.:: from pylab import * plot([1,2,3]) # implicitly creates subplot(111) subplot(211) # overlaps, subplot(111) is killed plot(rand(12), rand(12)) subplot(212, axisbg='y') # creates 2nd subplot with yellow background Keyword arguments: *axisbg*: The background color of the subplot, which can be any valid color specifier. See :mod:`matplotlib.colors` for more information. *polar*: A boolean flag indicating whether the subplot plot should be a polar projection. Defaults to False. *projection*: A string giving the name of a custom projection to be used for the subplot. This projection must have been previously registered. See :func:`matplotlib.projections.register_projection` .. seealso:: :func:`~matplotlib.pyplot.axes` For additional information on :func:`axes` and :func:`subplot` keyword arguments. :file:`examples/pylab_examples/polar_scatter.py` For an example **Example:** .. plot:: mpl_examples/pylab_examples/subplot_demo.py """ fig = gcf() a = fig.add_subplot(*args, **kwargs) bbox = a.bbox byebye = [] for other in fig.axes: if other==a: continue if bbox.fully_overlaps(other.bbox): byebye.append(other) for ax in byebye: delaxes(ax) draw_if_interactive() return a def subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, **fig_kw): """Create a figure with a set of subplots already made. This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call. Keyword arguments: nrows : int Number of rows of the subplot grid. Defaults to 1. ncols : int Number of columns of the subplot grid. Defaults to 1. sharex : bool If True, the X axis will be shared amongst all subplots. sharex : bool If True, the Y axis will be shared amongst all subplots. squeeze : bool If True, extra dimensions are squeezed out from the returned axis object: - if only one subplot is constructed (nrows=ncols=1), the resulting single Axis object is returned as a scalar. - for Nx1 or 1xN subplots, the returned object is a 1-d numpy object array of Axis objects are returned as numpy 1-d arrays. - for NxM subplots with N>1 and M>1 are returned as a 2d array. If False, no squeezing at all is done: the returned axis object is always a 2-d array contaning Axis instances, even if it ends up being 1x1. subplot_kw : dict Dict with keywords passed to the add_subplot() call used to create each subplots. fig_kw : dict Dict with keywords passed to the figure() call. Note that all keywords not recognized above will be automatically included here. Returns: fig, ax : tuple - fig is the Matplotlib Figure object - ax can be either a single axis object or an array of axis objects if more than one supblot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above. **Examples:** x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2) # Just a figure and one subplot f, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Two subplots, unpack the output array immediately f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Four polar axes plt.subplots(2, 2, subplot_kw=dict(polar=True)) """ if subplot_kw is None: subplot_kw = {} fig = figure(**fig_kw) # Create empty object array to hold all axes. It's easiest to make it 1-d # so we can just append subplots upon creation, and then nplots = nrows*ncols axarr = np.empty(nplots, dtype=object) # Create first subplot separately, so we can share it if requested ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw) if sharex: subplot_kw['sharex'] = ax0 if sharey: subplot_kw['sharey'] = ax0 axarr[0] = ax0 # Note off-by-one counting because add_subplot uses the MATLAB 1-based # convention. for i in range(1, nplots): axarr[i] = fig.add_subplot(nrows, ncols, i+1, **subplot_kw) if squeeze: # Reshape the array to have the final desired dimension (nrow,ncol), # though discarding unneeded dimensions that equal 1. If we only have # one subplot, just return it instead of a 1-element array. if nplots==1: return fig, axarr[0] else: return fig, axarr.reshape(nrows, ncols).squeeze() else: # returned axis array will be always 2-d, even if nrows=ncols=1 return fig, axarr.reshape(nrows, ncols) from gridspec import GridSpec def subplot2grid(shape, loc, rowspan=1, colspan=1, **kwargs): """ It creates a subplot in a grid of *shape*, at location of *loc*, spanning *rowspan*, *colspan* cells in each direction. The index for loc is 0-based. :: subplot2grid(shape, loc, rowspan=1, colspan=1) is identical to :: gridspec=GridSpec(shape[0], shape[2]) subplotspec=gridspec.new_subplotspec(loc, rowspan, colspan) subplot(subplotspec) """ fig = gcf() s1, s2 = shape subplotspec = GridSpec(s1, s2).new_subplotspec(loc, rowspan=rowspan, colspan=colspan) a = fig.add_subplot(subplotspec, **kwargs) bbox = a.bbox byebye = [] for other in fig.axes: if other==a: continue if bbox.fully_overlaps(other.bbox): byebye.append(other) for ax in byebye: delaxes(ax) draw_if_interactive() return a def twinx(ax=None): """ Make a second axes overlay *ax* (or the current axes if *ax* is *None*) sharing the xaxis. The ticks for *ax2* will be placed on the right, and the *ax2* instance is returned. .. seealso:: :file:`examples/api_examples/two_scales.py` For an example """ if ax is None: ax=gca() ax1 = ax.twinx() draw_if_interactive() return ax1 def twiny(ax=None): """ Make a second axes overlay *ax* (or the current axes if *ax* is *None*) sharing the yaxis. The ticks for *ax2* will be placed on the top, and the *ax2* instance is returned. """ if ax is None: ax=gca() ax1 = ax.twiny() draw_if_interactive() return ax1 def subplots_adjust(*args, **kwargs): """ call signature:: subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) Tune the subplot layout via the :class:`matplotlib.figure.SubplotParams` mechanism. The parameter meanings (and suggested defaults) are:: left = 0.125 # the left side of the subplots of the figure right = 0.9 # the right side of the subplots of the figure bottom = 0.1 # the bottom of the subplots of the figure top = 0.9 # the top of the subplots of the figure wspace = 0.2 # the amount of width reserved for blank space between subplots hspace = 0.2 # the amount of height reserved for white space between subplots The actual defaults are controlled by the rc file """ fig = gcf() fig.subplots_adjust(*args, **kwargs) draw_if_interactive() def subplot_tool(targetfig=None): """ Launch a subplot tool window for *targetfig* (default gcf). A :class:`matplotlib.widgets.SubplotTool` instance is returned. """ tbar = rcParams['toolbar'] # turn off the navigation toolbar for the toolfig rcParams['toolbar'] = 'None' if targetfig is None: manager = get_current_fig_manager() targetfig = manager.canvas.figure else: # find the manager for this figure for manager in _pylab_helpers.Gcf._activeQue: if manager.canvas.figure==targetfig: break else: raise RuntimeError('Could not find manager for targetfig') toolfig = figure(figsize=(6,3)) toolfig.subplots_adjust(top=0.9) ret = SubplotTool(targetfig, toolfig) rcParams['toolbar'] = tbar _pylab_helpers.Gcf.set_active(manager) # restore the current figure return ret def box(on=None): """ Turn the axes box on or off according to *on*. *on* may be a boolean or a string, 'on' or 'off'. If *on* is *None*, toggle state. """ ax = gca() on = _string_to_bool(on) if on is None: on = not ax.get_frame_on() ax.set_frame_on(on) draw_if_interactive() def title(s, *args, **kwargs): """ Set the title of the current axis to *s*. Default font override is:: override = {'fontsize': 'medium', 'verticalalignment': 'baseline', 'horizontalalignment': 'center'} .. seealso:: :func:`~matplotlib.pyplot.text` for information on how override and the optional args work. """ l = gca().set_title(s, *args, **kwargs) draw_if_interactive() return l ## Axis ## def axis(*v, **kwargs): """ Set/Get the axis properties: >>> axis() returns the current axes limits ``[xmin, xmax, ymin, ymax]``. >>> axis(v) sets the min and max of the x and y axes, with ``v = [xmin, xmax, ymin, ymax]``. >>> axis('off') turns off the axis lines and labels. >>> axis('equal') changes limits of *x* or *y* axis so that equal increments of *x* and *y* have the same length; a circle is circular. >>> axis('scaled') achieves the same result by changing the dimensions of the plot box instead of the axis data limits. >>> axis('tight') changes *x* and *y* axis limits such that all data is shown. If all data is already shown, it will move it to the center of the figure without modifying (*xmax* - *xmin*) or (*ymax* - *ymin*). Note this is slightly different than in MATLAB. >>> axis('image') is 'scaled' with the axis limits equal to the data limits. >>> axis('auto') and >>> axis('normal') are deprecated. They restore default behavior; axis limits are automatically scaled to make the data fit comfortably within the plot box. if ``len(*v)==0``, you can pass in *xmin*, *xmax*, *ymin*, *ymax* as kwargs selectively to alter just those limits without changing the others. The xmin, xmax, ymin, ymax tuple is returned .. seealso:: :func:`xlim`, :func:`ylim` For setting the x- and y-limits individually. """ ax = gca() v = ax.axis(*v, **kwargs) draw_if_interactive() return v def xlabel(s, *args, **kwargs): """ Set the *x* axis label of the current axis to *s* Default override is:: override = { 'fontsize' : 'small', 'verticalalignment' : 'top', 'horizontalalignment' : 'center' } .. seealso:: :func:`~matplotlib.pyplot.text` For information on how override and the optional args work """ l = gca().set_xlabel(s, *args, **kwargs) draw_if_interactive() return l def ylabel(s, *args, **kwargs): """ Set the *y* axis label of the current axis to *s*. Defaults override is:: override = { 'fontsize' : 'small', 'verticalalignment' : 'center', 'horizontalalignment' : 'right', 'rotation'='vertical' : } .. seealso:: :func:`~matplotlib.pyplot.text` For information on how override and the optional args work. """ l = gca().set_ylabel(s, *args, **kwargs) draw_if_interactive() return l def xlim(*args, **kwargs): """ Set/Get the xlimits of the current axes:: xmin, xmax = xlim() # return the current xlim xlim( (xmin, xmax) ) # set the xlim to xmin, xmax xlim( xmin, xmax ) # set the xlim to xmin, xmax If you do not specify args, you can pass the xmin and xmax as kwargs, eg.:: xlim(xmax=3) # adjust the max leaving min unchanged xlim(xmin=1) # adjust the min leaving max unchanged The new axis limits are returned as a length 2 tuple. """ ax = gca() ret = ax.set_xlim(*args, **kwargs) draw_if_interactive() return ret def ylim(*args, **kwargs): """ Set/Get the ylimits of the current axes:: ymin, ymax = ylim() # return the current ylim ylim( (ymin, ymax) ) # set the ylim to ymin, ymax ylim( ymin, ymax ) # set the ylim to ymin, ymax If you do not specify args, you can pass the *ymin* and *ymax* as kwargs, eg.:: ylim(ymax=3) # adjust the max leaving min unchanged ylim(ymin=1) # adjust the min leaving max unchanged The new axis limits are returned as a length 2 tuple. """ ax = gca() ret = ax.set_ylim(*args, **kwargs) draw_if_interactive() return ret @docstring.dedent_interpd def xscale(*args, **kwargs): """ call signature:: xscale(scale, **kwargs) Set the scaling for the x-axis: %(scale)s Different keywords may be accepted, depending on the scale: %(scale_docs)s """ ax = gca() ret = ax.set_xscale(*args, **kwargs) draw_if_interactive() return ret @docstring.dedent_interpd def yscale(*args, **kwargs): """ call signature:: yscale(scale, **kwargs) Set the scaling for the y-axis: %(scale)s Different keywords may be accepted, depending on the scale: %(scale_docs)s """ ax = gca() ret = ax.set_yscale(*args, **kwargs) draw_if_interactive() return ret def xticks(*args, **kwargs): """ Set/Get the xlimits of the current ticklocs and labels:: # return locs, labels where locs is an array of tick locations and # labels is an array of tick labels. locs, labels = xticks() # set the locations of the xticks xticks( arange(6) ) # set the locations and labels of the xticks xticks( arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue') ) The keyword args, if any, are :class:`~matplotlib.text.Text` properties. For example, to rotate long labels:: xticks( arange(12), calendar.month_name[1:13], rotation=17 ) """ ax = gca() if len(args)==0: locs = ax.get_xticks() labels = ax.get_xticklabels() elif len(args)==1: locs = ax.set_xticks(args[0]) labels = ax.get_xticklabels() elif len(args)==2: locs = ax.set_xticks(args[0]) labels = ax.set_xticklabels(args[1], **kwargs) else: raise TypeError('Illegal number of arguments to xticks') if len(kwargs): for l in labels: l.update(kwargs) draw_if_interactive() return locs, silent_list('Text xticklabel', labels) def yticks(*args, **kwargs): """ Set/Get the ylimits of the current ticklocs and labels:: # return locs, labels where locs is an array of tick locations and # labels is an array of tick labels. locs, labels = yticks() # set the locations of the yticks yticks( arange(6) ) # set the locations and labels of the yticks yticks( arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue') ) The keyword args, if any, are :class:`~matplotlib.text.Text` properties. For example, to rotate long labels:: yticks( arange(12), calendar.month_name[1:13], rotation=45 ) """ ax = gca() if len(args)==0: locs = ax.get_yticks() labels = ax.get_yticklabels() elif len(args)==1: locs = ax.set_yticks(args[0]) labels = ax.get_yticklabels() elif len(args)==2: locs = ax.set_yticks(args[0]) labels = ax.set_yticklabels(args[1], **kwargs) else: raise TypeError('Illegal number of arguments to yticks') if len(kwargs): for l in labels: l.update(kwargs) draw_if_interactive() return ( locs, silent_list('Text yticklabel', labels) ) def minorticks_on(): """ Display minor ticks on the current plot. Displaying minor ticks reduces performance; turn them off using minorticks_off() if drawing speed is a problem. """ gca().minorticks_on() draw_if_interactive() def minorticks_off(): """ Remove minor ticks from the current plot. """ gca().minorticks_off() draw_if_interactive() def rgrids(*args, **kwargs): """ Set/Get the radial locations of the gridlines and ticklabels on a polar plot. call signatures:: lines, labels = rgrids() lines, labels = rgrids(radii, labels=None, angle=22.5, **kwargs) When called with no arguments, :func:`rgrid` simply returns the tuple (*lines*, *labels*), where *lines* is an array of radial gridlines (:class:`~matplotlib.lines.Line2D` instances) and *labels* is an array of tick labels (:class:`~matplotlib.text.Text` instances). When called with arguments, the labels will appear at the specified radial distances and angles. *labels*, if not *None*, is a len(*radii*) list of strings of the labels to use at each angle. If *labels* is None, the rformatter will be used Examples:: # set the locations of the radial gridlines and labels lines, labels = rgrids( (0.25, 0.5, 1.0) ) # set the locations and labels of the radial gridlines and labels lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' ) """ ax = gca() if not isinstance(ax, PolarAxes): raise RuntimeError('rgrids only defined for polar axes') if len(args)==0: lines = ax.yaxis.get_gridlines() labels = ax.yaxis.get_ticklabels() else: lines, labels = ax.set_rgrids(*args, **kwargs) draw_if_interactive() return ( silent_list('Line2D rgridline', lines), silent_list('Text rgridlabel', labels) ) def thetagrids(*args, **kwargs): """ Set/Get the theta locations of the gridlines and ticklabels. If no arguments are passed, return a tuple (*lines*, *labels*) where *lines* is an array of radial gridlines (:class:`~matplotlib.lines.Line2D` instances) and *labels* is an array of tick labels (:class:`~matplotlib.text.Text` instances):: lines, labels = thetagrids() Otherwise the syntax is:: lines, labels = thetagrids(angles, labels=None, fmt='%d', frac = 1.1) set the angles at which to place the theta grids (these gridlines are equal along the theta dimension). *angles* is in degrees. *labels*, if not *None*, is a len(angles) list of strings of the labels to use at each angle. If *labels* is *None*, the labels will be ``fmt%angle``. *frac* is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is outside the axes and 0.95 is inside the axes. Return value is a list of tuples (*lines*, *labels*): - *lines* are :class:`~matplotlib.lines.Line2D` instances - *labels* are :class:`~matplotlib.text.Text` instances. Note that on input, the *labels* argument is a list of strings, and on output it is a list of :class:`~matplotlib.text.Text` instances. Examples:: # set the locations of the radial gridlines and labels lines, labels = thetagrids( range(45,360,90) ) # set the locations and labels of the radial gridlines and labels lines, labels = thetagrids( range(45,360,90), ('NE', 'NW', 'SW','SE') ) """ ax = gca() if not isinstance(ax, PolarAxes): raise RuntimeError('rgrids only defined for polar axes') if len(args)==0: lines = ax.xaxis.get_ticklines() labels = ax.xaxis.get_ticklabels() else: lines, labels = ax.set_thetagrids(*args, **kwargs) draw_if_interactive() return (silent_list('Line2D thetagridline', lines), silent_list('Text thetagridlabel', labels) ) ## Plotting Info ## def plotting(): """ Plotting commands =============== ========================================================= Command Description =============== ========================================================= axes Create a new axes axis Set or return the current axis limits bar make a bar chart boxplot make a box and whiskers chart cla clear current axes clabel label a contour plot clf clear a figure window close close a figure window colorbar add a colorbar to the current figure cohere make a plot of coherence contour make a contour plot contourf make a filled contour plot csd make a plot of cross spectral density draw force a redraw of the current figure errorbar make an errorbar graph figlegend add a legend to the figure figimage add an image to the figure, w/o resampling figtext add text in figure coords figure create or change active figure fill make filled polygons fill_between make filled polygons between two sets of y-values fill_betweenx make filled polygons between two sets of x-values gca return the current axes gcf return the current figure gci get the current image, or None getp get a graphics property hist make a histogram hold set the hold state on current axes legend add a legend to the axes loglog a log log plot imread load image file into array imsave save array as an image file imshow plot image data matshow display a matrix in a new figure preserving aspect pcolor make a pseudocolor plot plot make a line plot plotfile plot data from a flat file psd make a plot of power spectral density quiver make a direction field (arrows) plot rc control the default params savefig save the current figure scatter make a scatter plot setp set a graphics property semilogx log x axis semilogy log y axis show show the figures specgram a spectrogram plot stem make a stem plot subplot make a subplot (numrows, numcols, axesnum) table add a table to the axes text add some text at location x,y to the current axes title add a title to the current axes xlabel add an xlabel to the current axes ylabel add a ylabel to the current axes =============== ========================================================= The following commands will set the default colormap accordingly: * autumn * bone * cool * copper * flag * gray * hot * hsv * jet * pink * prism * spring * summer * winter * spectral """ pass def get_plot_commands(): return ( 'axes', 'axis', 'bar', 'boxplot', 'cla', 'clf', 'close', 'colorbar', 'cohere', 'csd', 'draw', 'errorbar', 'figlegend', 'figtext', 'figimage', 'figure', 'fill', 'gca', 'gcf', 'gci', 'get', 'gray', 'barh', 'jet', 'hist', 'hold', 'imread', 'imsave', 'imshow', 'legend', 'loglog', 'quiver', 'rc', 'pcolor', 'pcolormesh', 'plot', 'psd', 'savefig', 'scatter', 'set', 'semilogx', 'semilogy', 'show', 'specgram', 'stem', 'subplot', 'table', 'text', 'title', 'xlabel', 'ylabel', 'pie', 'polar') def colors(): """ This is a do-nothing function to provide you with help on how matplotlib handles colors. Commands which take color arguments can use several formats to specify the colors. For the basic builtin colors, you can use a single letter ===== ======= Alias Color ===== ======= 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white ===== ======= For a greater range of colors, you have two options. You can specify the color using an html hex string, as in:: color = '#eeefff' or you can pass an R,G,B tuple, where each of R,G,B are in the range [0,1]. You can also use any legal html name for a color, for example:: color = 'red', color = 'burlywood' color = 'chartreuse' The example below creates a subplot with a dark slate gray background subplot(111, axisbg=(0.1843, 0.3098, 0.3098)) Here is an example that creates a pale turqoise title:: title('Is this the best color?', color='#afeeee') """ pass def colormaps(): """ matplotlib provides the following colormaps. * autumn * bone * cool * copper * flag * gray * hot * hsv * jet * pink * prism * spring * summer * winter * spectral You can set the colormap for an image, pcolor, scatter, etc, either as a keyword argument:: imshow(X, cmap=cm.hot) or post-hoc using the corresponding pylab interface function:: imshow(X) hot() jet() In interactive mode, this will update the colormap allowing you to see which one works best for your data. """ pass ## Plotting part 1: manually generated functions and wrappers ## import matplotlib.colorbar def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) draw_if_interactive() return ret colorbar.__doc__ = matplotlib.colorbar.colorbar_doc def clim(vmin=None, vmax=None): """ Set the color limits of the current image To apply clim to all axes images do:: clim(0, 0.5) If either *vmin* or *vmax* is None, the image min/max respectively will be used for color scaling. If you want to set the clim of multiple images, use, for example:: for im in gca().get_images(): im.set_clim(0, 0.05) """ im = gci() if im is None: raise RuntimeError('You must first define an image, eg with imshow') im.set_clim(vmin, vmax) draw_if_interactive() def set_cmap(cmap): ''' set the default colormap to *cmap* and apply to current image if any. See help(colormaps) for more information. *cmap* must be a :class:`colors.Colormap` instance, or the name of a registered colormap. See :func:`register_cmap` and :func:`get_cmap`. ''' cmap = cm.get_cmap(cmap) rc('image', cmap=cmap.name) im = gci() if im is not None: im.set_cmap(cmap) draw_if_interactive() @docstring.copy_dedent(_imread) def imread(*args, **kwargs): return _imread(*args, **kwargs) @docstring.copy_dedent(_imsave) def imsave(*args, **kwargs): return _imsave(*args, **kwargs) def matshow(A, fignum=None, **kw): """ Display an array as a matrix in a new figure window. The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed horizontally. The aspect ratio of the figure window is that of the array, unless this would make an excessively short or narrow figure. Tick labels for the xaxis are placed on top. With the exception of fignum, keyword arguments are passed to :func:`~matplotlib.pyplot.imshow`. *fignum*: [ None | integer | False ] By default, :func:`matshow` creates a new figure window with automatic numbering. If *fignum* is given as an integer, the created figure will use this figure number. Because of how :func:`matshow` tries to set the figure aspect ratio to be the one of the array, if you provide the number of an already existing figure, strange things may happen. If *fignum* is *False* or 0, a new figure window will **NOT** be created. """ if fignum is False or fignum is 0: ax = gca() else: # Extract actual aspect ratio of array and make appropriately sized figure fig = figure(fignum, figsize=figaspect(A)) ax = fig.add_axes([0.15, 0.09, 0.775, 0.775]) im = ax.matshow(A, **kw) sci(im) draw_if_interactive() return im def polar(*args, **kwargs): """ call signature:: polar(theta, r, **kwargs) Make a polar plot. Multiple *theta*, *r* arguments are supported, with format strings, as in :func:`~matplotlib.pyplot.plot`. An optional kwarg *resolution* sets the number of vertices to interpolate between each pair of points. The default is 1, which disables interpolation. """ resolution = kwargs.pop('resolution', None) ax = gca(polar=True, resolution=resolution) ret = ax.plot(*args, **kwargs) draw_if_interactive() return ret def plotfile(fname, cols=(0,), plotfuncs=None, comments='#', skiprows=0, checkrows=5, delimiter=',', names=None, subplots=True, newfig=True, **kwargs): """ Plot the data in *fname* *cols* is a sequence of column identifiers to plot. An identifier is either an int or a string. If it is an int, it indicates the column number. If it is a string, it indicates the column header. matplotlib will make column headers lower case, replace spaces with underscores, and remove all illegal characters; so ``'Adj Close*'`` will have name ``'adj_close'``. - If len(*cols*) == 1, only that column will be plotted on the *y* axis. - If len(*cols*) > 1, the first element will be an identifier for data for the *x* axis and the remaining elements will be the column indexes for multiple subplots if *subplots* is *True* (the default), or for lines in a single subplot if *subplots* is *False*. *plotfuncs*, if not *None*, is a dictionary mapping identifier to an :class:`~matplotlib.axes.Axes` plotting function as a string. Default is 'plot', other choices are 'semilogy', 'fill', 'bar', etc. You must use the same type of identifier in the *cols* vector as you use in the *plotfuncs* dictionary, eg., integer column numbers in both or column names in both. If *subplots* is *False*, then including any function such as 'semilogy' that changes the axis scaling will set the scaling for all columns. *comments*, *skiprows*, *checkrows*, *delimiter*, and *names* are all passed on to :func:`matplotlib.pylab.csv2rec` to load the data into a record array. If *newfig* is *True*, the plot always will be made in a new figure; if *False*, it will be made in the current figure if one exists, else in a new figure. kwargs are passed on to plotting functions. Example usage:: # plot the 2nd and 4th column against the 1st in two subplots plotfile(fname, (0,1,3)) # plot using column names; specify an alternate plot type for volume plotfile(fname, ('date', 'volume', 'adj_close'), plotfuncs={'volume': 'semilogy'}) Note: plotfile is intended as a convenience for quickly plotting data from flat files; it is not intended as an alternative interface to general plotting with pyplot or matplotlib. """ if newfig: fig = figure() else: fig = gcf() if len(cols)<1: raise ValueError('must have at least one column of data') if plotfuncs is None: plotfuncs = dict() r = mlab.csv2rec(fname, comments=comments, skiprows=skiprows, checkrows=checkrows, delimiter=delimiter, names=names) def getname_val(identifier): 'return the name and column data for identifier' if is_string_like(identifier): return identifier, r[identifier] elif is_numlike(identifier): name = r.dtype.names[int(identifier)] return name, r[name] else: raise TypeError('identifier must be a string or integer') xname, x = getname_val(cols[0]) ynamelist = [] if len(cols)==1: ax1 = fig.add_subplot(1,1,1) funcname = plotfuncs.get(cols[0], 'plot') func = getattr(ax1, funcname) func(x, **kwargs) ax1.set_ylabel(xname) else: N = len(cols) for i in range(1,N): if subplots: if i==1: ax = ax1 = fig.add_subplot(N-1,1,i) else: ax = fig.add_subplot(N-1,1,i, sharex=ax1) elif i==1: ax = fig.add_subplot(1,1,1) ax.grid(True) yname, y = getname_val(cols[i]) ynamelist.append(yname) funcname = plotfuncs.get(cols[i], 'plot') func = getattr(ax, funcname) func(x, y, **kwargs) if subplots: ax.set_ylabel(yname) if ax.is_last_row(): ax.set_xlabel(xname) else: ax.set_xlabel('') if not subplots: ax.legend(ynamelist, loc='best') if xname=='date': fig.autofmt_xdate() draw_if_interactive() def autogen_docstring(base): """Autogenerated wrappers will get their docstring from a base function with an addendum.""" msg = "\n\nAdditional kwargs: hold = [True|False] overrides default hold state" addendum = docstring.Appender(msg, '\n\n') return lambda func: addendum(docstring.copy_dedent(base)(func)) # This function cannot be generated by boilerplate.py because it may # return an image or a line. @autogen_docstring(Axes.spy) def spy(Z, precision=0, marker=None, markersize=None, aspect='equal', hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.spy(Z, precision, marker, markersize, aspect, **kwargs) draw_if_interactive() finally: ax.hold(washold) if isinstance(ret, cm.ScalarMappable): sci(ret) return ret ## Plotting part 2: autogenerated wrappers for axes methods ## # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.acorr) def acorr(x, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.acorr(x, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.arrow) def arrow(x, y, dx, dy, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.arrow(x, y, dx, dy, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.axhline) def axhline(y=0, xmin=0, xmax=1, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.axhline(y, xmin, xmax, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.axhspan) def axhspan(ymin, ymax, xmin=0, xmax=1, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.axhspan(ymin, ymax, xmin, xmax, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.axvline) def axvline(x=0, ymin=0, ymax=1, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.axvline(x, ymin, ymax, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.axvspan) def axvspan(xmin, xmax, ymin=0, ymax=1, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.axvspan(xmin, xmax, ymin, ymax, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.bar) def bar(left, height, width=0.80000000000000004, bottom=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.bar(left, height, width, bottom, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.barh) def barh(bottom, width, height=0.80000000000000004, left=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.barh(bottom, width, height, left, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.broken_barh) def broken_barh(xranges, yrange, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.broken_barh(xranges, yrange, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.boxplot) def boxplot(x, notch=0, sym='b+', vert=1, whis=1.5, positions=None, widths=None, patch_artist=False, bootstrap=None, hold=None): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.boxplot(x, notch, sym, vert, whis, positions, widths, patch_artist, bootstrap) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.cohere) def cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.cohere(x, y, NFFT, Fs, Fc, detrend, window, noverlap, pad_to, sides, scale_by_freq, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.clabel) def clabel(CS, *args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.clabel(CS, *args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.contour) def contour(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.contour(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) if ret._A is not None: sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.contourf) def contourf(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.contourf(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) if ret._A is not None: sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.csd) def csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.csd(x, y, NFFT, Fs, Fc, detrend, window, noverlap, pad_to, sides, scale_by_freq, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.errorbar) def errorbar(x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.errorbar(x, y, yerr, xerr, fmt, ecolor, elinewidth, capsize, barsabove, lolims, uplims, xlolims, xuplims, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.fill) def fill(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.fill(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.fill_between) def fill_between(x, y1, y2=0, where=None, interpolate=False, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.fill_between(x, y1, y2, where, interpolate, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.fill_betweenx) def fill_betweenx(y, x1, x2=0, where=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.fill_betweenx(y, x1, x2, where, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.hexbin) def hexbin(x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', extent=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='none', reduce_C_function=np.mean, mincnt=None, marginals=False, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.hexbin(x, y, C, gridsize, bins, xscale, yscale, extent, cmap, norm, vmin, vmax, alpha, linewidths, edgecolors, reduce_C_function, mincnt, marginals, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.hist) def hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.hist(x, bins, range, normed, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.hlines) def hlines(y, xmin, xmax, colors='k', linestyles='solid', label='', hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.hlines(y, xmin, xmax, colors, linestyles, label, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.imshow) def imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.imshow(X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, shape, filternorm, filterrad, imlim, resample, url, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.loglog) def loglog(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.loglog(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.pcolor) def pcolor(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.pcolor(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.pcolormesh) def pcolormesh(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.pcolormesh(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.pie) def pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.59999999999999998, shadow=False, labeldistance=1.1000000000000001, hold=None): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.pie(x, explode, labels, colors, autopct, pctdistance, shadow, labeldistance) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.plot) def plot(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.plot(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.plot_date) def plot_date(x, y, fmt='bo', tz=None, xdate=True, ydate=False, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.plot_date(x, y, fmt, tz, xdate, ydate, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.psd) def psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.psd(x, NFFT, Fs, Fc, detrend, window, noverlap, pad_to, sides, scale_by_freq, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.quiver) def quiver(*args, **kw): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kw.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.quiver(*args, **kw) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.quiverkey) def quiverkey(*args, **kw): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kw.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.quiverkey(*args, **kw) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.scatter) def scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, faceted=True, verts=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.scatter(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, faceted, verts, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.semilogx) def semilogx(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.semilogx(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.semilogy) def semilogy(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.semilogy(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.specgram) def specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.specgram(x, NFFT, Fs, Fc, detrend, window, noverlap, cmap, xextent, pad_to, sides, scale_by_freq, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret[-1]) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.stem) def stem(x, y, linefmt='b-', markerfmt='bo', basefmt='r-', hold=None): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.stem(x, y, linefmt, markerfmt, basefmt) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.step) def step(x, y, *args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.step(x, y, *args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.tricontour) def tricontour(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.tricontour(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) if ret._A is not None: sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.tricontourf) def tricontourf(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.tricontourf(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) if ret._A is not None: sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.tripcolor) def tripcolor(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.tripcolor(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.triplot) def triplot(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.triplot(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.vlines) def vlines(x, ymin, ymax, colors='k', linestyles='solid', label='', hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.vlines(x, ymin, ymax, colors, linestyles, label, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.xcorr) def xcorr(x, y, normed=True, detrend=mlab.detrend_none, usevlines=True, maxlags=10, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.xcorr(x, y, normed, detrend, usevlines, maxlags, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @autogen_docstring(Axes.barbs) def barbs(*args, **kw): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kw.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.barbs(*args, **kw) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.cla) def cla(): ret = gca().cla() draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.grid) def grid(b=None, which='major', **kwargs): ret = gca().grid(b, which, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.legend) def legend(*args, **kwargs): ret = gca().legend(*args, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.table) def table(**kwargs): ret = gca().table(**kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.text) def text(x, y, s, fontdict=None, withdash=False, **kwargs): ret = gca().text(x, y, s, fontdict, withdash, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.annotate) def annotate(*args, **kwargs): ret = gca().annotate(*args, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.ticklabel_format) def ticklabel_format(**kwargs): ret = gca().ticklabel_format(**kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.locator_params) def locator_params(axis='both', tight=None, **kwargs): ret = gca().locator_params(axis, tight, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.tick_params) def tick_params(axis='both', **kwargs): ret = gca().tick_params(axis, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.margins) def margins(*args, **kw): ret = gca().margins(*args, **kw) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.autoscale) def autoscale(enable=True, axis='both', tight=None): ret = gca().autoscale(enable, axis, tight) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def autumn(): ''' set the default colormap to autumn and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='autumn') im = gci() if im is not None: im.set_cmap(cm.autumn) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def bone(): ''' set the default colormap to bone and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='bone') im = gci() if im is not None: im.set_cmap(cm.bone) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def cool(): ''' set the default colormap to cool and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='cool') im = gci() if im is not None: im.set_cmap(cm.cool) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def copper(): ''' set the default colormap to copper and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='copper') im = gci() if im is not None: im.set_cmap(cm.copper) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def flag(): ''' set the default colormap to flag and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='flag') im = gci() if im is not None: im.set_cmap(cm.flag) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def gray(): ''' set the default colormap to gray and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='gray') im = gci() if im is not None: im.set_cmap(cm.gray) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def hot(): ''' set the default colormap to hot and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='hot') im = gci() if im is not None: im.set_cmap(cm.hot) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def hsv(): ''' set the default colormap to hsv and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='hsv') im = gci() if im is not None: im.set_cmap(cm.hsv) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def jet(): ''' set the default colormap to jet and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='jet') im = gci() if im is not None: im.set_cmap(cm.jet) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def pink(): ''' set the default colormap to pink and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='pink') im = gci() if im is not None: im.set_cmap(cm.pink) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def prism(): ''' set the default colormap to prism and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='prism') im = gci() if im is not None: im.set_cmap(cm.prism) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def spring(): ''' set the default colormap to spring and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='spring') im = gci() if im is not None: im.set_cmap(cm.spring) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def summer(): ''' set the default colormap to summer and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='summer') im = gci() if im is not None: im.set_cmap(cm.summer) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def winter(): ''' set the default colormap to winter and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='winter') im = gci() if im is not None: im.set_cmap(cm.winter) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def spectral(): ''' set the default colormap to spectral and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='spectral') im = gci() if im is not None: im.set_cmap(cm.spectral) draw_if_interactive()