D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
opt
/
td-agent
/
embedded
/
include
/
postgresql
/
server
/
nodes
/
Filename :
plannodes.h
back
Copy
/*------------------------------------------------------------------------- * * plannodes.h * definitions for query plan nodes * * * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * src/include/nodes/plannodes.h * *------------------------------------------------------------------------- */ #ifndef PLANNODES_H #define PLANNODES_H #include "access/sdir.h" #include "nodes/bitmapset.h" #include "nodes/primnodes.h" /* ---------------------------------------------------------------- * node definitions * ---------------------------------------------------------------- */ /* ---------------- * PlannedStmt node * * The output of the planner is a Plan tree headed by a PlannedStmt node. * PlannedStmt holds the "one time" information needed by the executor. * ---------------- */ typedef struct PlannedStmt { NodeTag type; CmdType commandType; /* select|insert|update|delete */ uint32 queryId; /* query identifier (copied from Query) */ bool hasReturning; /* is it insert|update|delete RETURNING? */ bool hasModifyingCTE; /* has insert|update|delete in WITH? */ bool canSetTag; /* do I set the command result tag? */ bool transientPlan; /* redo plan when TransactionXmin changes? */ struct Plan *planTree; /* tree of Plan nodes */ List *rtable; /* list of RangeTblEntry nodes */ /* rtable indexes of target relations for INSERT/UPDATE/DELETE */ List *resultRelations; /* integer list of RT indexes, or NIL */ Node *utilityStmt; /* non-null if this is DECLARE CURSOR */ List *subplans; /* Plan trees for SubPlan expressions */ Bitmapset *rewindPlanIDs; /* indices of subplans that require REWIND */ List *rowMarks; /* a list of PlanRowMark's */ List *relationOids; /* OIDs of relations the plan depends on */ List *invalItems; /* other dependencies, as PlanInvalItems */ int nParamExec; /* number of PARAM_EXEC Params used */ } PlannedStmt; /* macro for fetching the Plan associated with a SubPlan node */ #define exec_subplan_get_plan(plannedstmt, subplan) \ ((Plan *) list_nth((plannedstmt)->subplans, (subplan)->plan_id - 1)) /* ---------------- * Plan node * * All plan nodes "derive" from the Plan structure by having the * Plan structure as the first field. This ensures that everything works * when nodes are cast to Plan's. (node pointers are frequently cast to Plan* * when passed around generically in the executor) * * We never actually instantiate any Plan nodes; this is just the common * abstract superclass for all Plan-type nodes. * ---------------- */ typedef struct Plan { NodeTag type; /* * estimated execution costs for plan (see costsize.c for more info) */ Cost startup_cost; /* cost expended before fetching any tuples */ Cost total_cost; /* total cost (assuming all tuples fetched) */ /* * planner's estimate of result size of this plan step */ double plan_rows; /* number of rows plan is expected to emit */ int plan_width; /* average row width in bytes */ /* * Common structural data for all Plan types. */ List *targetlist; /* target list to be computed at this node */ List *qual; /* implicitly-ANDed qual conditions */ struct Plan *lefttree; /* input plan tree(s) */ struct Plan *righttree; List *initPlan; /* Init Plan nodes (un-correlated expr * subselects) */ /* * Information for management of parameter-change-driven rescanning * * extParam includes the paramIDs of all external PARAM_EXEC params * affecting this plan node or its children. setParam params from the * node's initPlans are not included, but their extParams are. * * allParam includes all the extParam paramIDs, plus the IDs of local * params that affect the node (i.e., the setParams of its initplans). * These are _all_ the PARAM_EXEC params that affect this node. */ Bitmapset *extParam; Bitmapset *allParam; } Plan; /* ---------------- * these are defined to avoid confusion problems with "left" * and "right" and "inner" and "outer". The convention is that * the "left" plan is the "outer" plan and the "right" plan is * the inner plan, but these make the code more readable. * ---------------- */ #define innerPlan(node) (((Plan *)(node))->righttree) #define outerPlan(node) (((Plan *)(node))->lefttree) /* ---------------- * Result node - * If no outer plan, evaluate a variable-free targetlist. * If outer plan, return tuples from outer plan (after a level of * projection as shown by targetlist). * * If resconstantqual isn't NULL, it represents a one-time qualification * test (i.e., one that doesn't depend on any variables from the outer plan, * so needs to be evaluated only once). * ---------------- */ typedef struct Result { Plan plan; Node *resconstantqual; } Result; /* ---------------- * ModifyTable node - * Apply rows produced by subplan(s) to result table(s), * by inserting, updating, or deleting. * * Note that rowMarks and epqParam are presumed to be valid for all the * subplan(s); they can't contain any info that varies across subplans. * ---------------- */ typedef struct ModifyTable { Plan plan; CmdType operation; /* INSERT, UPDATE, or DELETE */ bool canSetTag; /* do we set the command tag/es_processed? */ List *resultRelations; /* integer list of RT indexes */ int resultRelIndex; /* index of first resultRel in plan's list */ List *plans; /* plan(s) producing source data */ List *returningLists; /* per-target-table RETURNING tlists */ List *fdwPrivLists; /* per-target-table FDW private data lists */ List *rowMarks; /* PlanRowMarks (non-locking only) */ int epqParam; /* ID of Param for EvalPlanQual re-eval */ } ModifyTable; /* ---------------- * Append node - * Generate the concatenation of the results of sub-plans. * ---------------- */ typedef struct Append { Plan plan; List *appendplans; } Append; /* ---------------- * MergeAppend node - * Merge the results of pre-sorted sub-plans to preserve the ordering. * ---------------- */ typedef struct MergeAppend { Plan plan; List *mergeplans; /* remaining fields are just like the sort-key info in struct Sort */ int numCols; /* number of sort-key columns */ AttrNumber *sortColIdx; /* their indexes in the target list */ Oid *sortOperators; /* OIDs of operators to sort them by */ Oid *collations; /* OIDs of collations */ bool *nullsFirst; /* NULLS FIRST/LAST directions */ } MergeAppend; /* ---------------- * RecursiveUnion node - * Generate a recursive union of two subplans. * * The "outer" subplan is always the non-recursive term, and the "inner" * subplan is the recursive term. * ---------------- */ typedef struct RecursiveUnion { Plan plan; int wtParam; /* ID of Param representing work table */ /* Remaining fields are zero/null in UNION ALL case */ int numCols; /* number of columns to check for * duplicate-ness */ AttrNumber *dupColIdx; /* their indexes in the target list */ Oid *dupOperators; /* equality operators to compare with */ long numGroups; /* estimated number of groups in input */ } RecursiveUnion; /* ---------------- * BitmapAnd node - * Generate the intersection of the results of sub-plans. * * The subplans must be of types that yield tuple bitmaps. The targetlist * and qual fields of the plan are unused and are always NIL. * ---------------- */ typedef struct BitmapAnd { Plan plan; List *bitmapplans; } BitmapAnd; /* ---------------- * BitmapOr node - * Generate the union of the results of sub-plans. * * The subplans must be of types that yield tuple bitmaps. The targetlist * and qual fields of the plan are unused and are always NIL. * ---------------- */ typedef struct BitmapOr { Plan plan; List *bitmapplans; } BitmapOr; /* * ========== * Scan nodes * ========== */ typedef struct Scan { Plan plan; Index scanrelid; /* relid is index into the range table */ } Scan; /* ---------------- * sequential scan node * ---------------- */ typedef Scan SeqScan; /* ---------------- * index scan node * * indexqualorig is an implicitly-ANDed list of index qual expressions, each * in the same form it appeared in the query WHERE condition. Each should * be of the form (indexkey OP comparisonval) or (comparisonval OP indexkey). * The indexkey is a Var or expression referencing column(s) of the index's * base table. The comparisonval might be any expression, but it won't use * any columns of the base table. The expressions are ordered by index * column position (but items referencing the same index column can appear * in any order). indexqualorig is used at runtime only if we have to recheck * a lossy indexqual. * * indexqual has the same form, but the expressions have been commuted if * necessary to put the indexkeys on the left, and the indexkeys are replaced * by Var nodes identifying the index columns (their varno is INDEX_VAR and * their varattno is the index column number). * * indexorderbyorig is similarly the original form of any ORDER BY expressions * that are being implemented by the index, while indexorderby is modified to * have index column Vars on the left-hand side. Here, multiple expressions * must appear in exactly the ORDER BY order, and this is not necessarily the * index column order. Only the expressions are provided, not the auxiliary * sort-order information from the ORDER BY SortGroupClauses; it's assumed * that the sort ordering is fully determinable from the top-level operators. * indexorderbyorig is unused at run time, but is needed for EXPLAIN. * (Note these fields are used for amcanorderbyop cases, not amcanorder cases.) * * indexorderdir specifies the scan ordering, for indexscans on amcanorder * indexes (for other indexes it should be "don't care"). * ---------------- */ typedef struct IndexScan { Scan scan; Oid indexid; /* OID of index to scan */ List *indexqual; /* list of index quals (usually OpExprs) */ List *indexqualorig; /* the same in original form */ List *indexorderby; /* list of index ORDER BY exprs */ List *indexorderbyorig; /* the same in original form */ ScanDirection indexorderdir; /* forward or backward or don't care */ } IndexScan; /* ---------------- * index-only scan node * * IndexOnlyScan is very similar to IndexScan, but it specifies an * index-only scan, in which the data comes from the index not the heap. * Because of this, *all* Vars in the plan node's targetlist, qual, and * index expressions reference index columns and have varno = INDEX_VAR. * Hence we do not need separate indexqualorig and indexorderbyorig lists, * since their contents would be equivalent to indexqual and indexorderby. * * To help EXPLAIN interpret the index Vars for display, we provide * indextlist, which represents the contents of the index as a targetlist * with one TLE per index column. Vars appearing in this list reference * the base table, and this is the only field in the plan node that may * contain such Vars. * ---------------- */ typedef struct IndexOnlyScan { Scan scan; Oid indexid; /* OID of index to scan */ List *indexqual; /* list of index quals (usually OpExprs) */ List *indexorderby; /* list of index ORDER BY exprs */ List *indextlist; /* TargetEntry list describing index's cols */ ScanDirection indexorderdir; /* forward or backward or don't care */ } IndexOnlyScan; /* ---------------- * bitmap index scan node * * BitmapIndexScan delivers a bitmap of potential tuple locations; * it does not access the heap itself. The bitmap is used by an * ancestor BitmapHeapScan node, possibly after passing through * intermediate BitmapAnd and/or BitmapOr nodes to combine it with * the results of other BitmapIndexScans. * * The fields have the same meanings as for IndexScan, except we don't * store a direction flag because direction is uninteresting. * * In a BitmapIndexScan plan node, the targetlist and qual fields are * not used and are always NIL. The indexqualorig field is unused at * run time too, but is saved for the benefit of EXPLAIN. * ---------------- */ typedef struct BitmapIndexScan { Scan scan; Oid indexid; /* OID of index to scan */ List *indexqual; /* list of index quals (OpExprs) */ List *indexqualorig; /* the same in original form */ } BitmapIndexScan; /* ---------------- * bitmap sequential scan node * * This needs a copy of the qual conditions being used by the input index * scans because there are various cases where we need to recheck the quals; * for example, when the bitmap is lossy about the specific rows on a page * that meet the index condition. * ---------------- */ typedef struct BitmapHeapScan { Scan scan; List *bitmapqualorig; /* index quals, in standard expr form */ } BitmapHeapScan; /* ---------------- * tid scan node * * tidquals is an implicitly OR'ed list of qual expressions of the form * "CTID = pseudoconstant" or "CTID = ANY(pseudoconstant_array)". * ---------------- */ typedef struct TidScan { Scan scan; List *tidquals; /* qual(s) involving CTID = something */ } TidScan; /* ---------------- * subquery scan node * * SubqueryScan is for scanning the output of a sub-query in the range table. * We often need an extra plan node above the sub-query's plan to perform * expression evaluations (which we can't push into the sub-query without * risking changing its semantics). Although we are not scanning a physical * relation, we make this a descendant of Scan anyway for code-sharing * purposes. * * Note: we store the sub-plan in the type-specific subplan field, not in * the generic lefttree field as you might expect. This is because we do * not want plan-tree-traversal routines to recurse into the subplan without * knowing that they are changing Query contexts. * ---------------- */ typedef struct SubqueryScan { Scan scan; Plan *subplan; } SubqueryScan; /* ---------------- * FunctionScan node * ---------------- */ typedef struct FunctionScan { Scan scan; Node *funcexpr; /* expression tree for func call */ List *funccolnames; /* output column names (string Value nodes) */ List *funccoltypes; /* OID list of column type OIDs */ List *funccoltypmods; /* integer list of column typmods */ List *funccolcollations; /* OID list of column collation OIDs */ } FunctionScan; /* ---------------- * ValuesScan node * ---------------- */ typedef struct ValuesScan { Scan scan; List *values_lists; /* list of expression lists */ } ValuesScan; /* ---------------- * CteScan node * ---------------- */ typedef struct CteScan { Scan scan; int ctePlanId; /* ID of init SubPlan for CTE */ int cteParam; /* ID of Param representing CTE output */ } CteScan; /* ---------------- * WorkTableScan node * ---------------- */ typedef struct WorkTableScan { Scan scan; int wtParam; /* ID of Param representing work table */ } WorkTableScan; /* ---------------- * ForeignScan node * * fdw_exprs and fdw_private are both under the control of the foreign-data * wrapper, but fdw_exprs is presumed to contain expression trees and will * be post-processed accordingly by the planner; fdw_private won't be. * Note that everything in both lists must be copiable by copyObject(). * One way to store an arbitrary blob of bytes is to represent it as a bytea * Const. Usually, though, you'll be better off choosing a representation * that can be dumped usefully by nodeToString(). * ---------------- */ typedef struct ForeignScan { Scan scan; List *fdw_exprs; /* expressions that FDW may evaluate */ List *fdw_private; /* private data for FDW */ bool fsSystemCol; /* true if any "system column" is needed */ } ForeignScan; /* * ========== * Join nodes * ========== */ /* ---------------- * Join node * * jointype: rule for joining tuples from left and right subtrees * joinqual: qual conditions that came from JOIN/ON or JOIN/USING * (plan.qual contains conditions that came from WHERE) * * When jointype is INNER, joinqual and plan.qual are semantically * interchangeable. For OUTER jointypes, the two are *not* interchangeable; * only joinqual is used to determine whether a match has been found for * the purpose of deciding whether to generate null-extended tuples. * (But plan.qual is still applied before actually returning a tuple.) * For an outer join, only joinquals are allowed to be used as the merge * or hash condition of a merge or hash join. * ---------------- */ typedef struct Join { Plan plan; JoinType jointype; List *joinqual; /* JOIN quals (in addition to plan.qual) */ } Join; /* ---------------- * nest loop join node * * The nestParams list identifies any executor Params that must be passed * into execution of the inner subplan carrying values from the current row * of the outer subplan. Currently we restrict these values to be simple * Vars, but perhaps someday that'd be worth relaxing. (Note: during plan * creation, the paramval can actually be a PlaceHolderVar expression; but it * must be a Var with varno OUTER_VAR by the time it gets to the executor.) * ---------------- */ typedef struct NestLoop { Join join; List *nestParams; /* list of NestLoopParam nodes */ } NestLoop; typedef struct NestLoopParam { NodeTag type; int paramno; /* number of the PARAM_EXEC Param to set */ Var *paramval; /* outer-relation Var to assign to Param */ } NestLoopParam; /* ---------------- * merge join node * * The expected ordering of each mergeable column is described by a btree * opfamily OID, a collation OID, a direction (BTLessStrategyNumber or * BTGreaterStrategyNumber) and a nulls-first flag. Note that the two sides * of each mergeclause may be of different datatypes, but they are ordered the * same way according to the common opfamily and collation. The operator in * each mergeclause must be an equality operator of the indicated opfamily. * ---------------- */ typedef struct MergeJoin { Join join; List *mergeclauses; /* mergeclauses as expression trees */ /* these are arrays, but have the same length as the mergeclauses list: */ Oid *mergeFamilies; /* per-clause OIDs of btree opfamilies */ Oid *mergeCollations; /* per-clause OIDs of collations */ int *mergeStrategies; /* per-clause ordering (ASC or DESC) */ bool *mergeNullsFirst; /* per-clause nulls ordering */ } MergeJoin; /* ---------------- * hash join node * ---------------- */ typedef struct HashJoin { Join join; List *hashclauses; } HashJoin; /* ---------------- * materialization node * ---------------- */ typedef struct Material { Plan plan; } Material; /* ---------------- * sort node * ---------------- */ typedef struct Sort { Plan plan; int numCols; /* number of sort-key columns */ AttrNumber *sortColIdx; /* their indexes in the target list */ Oid *sortOperators; /* OIDs of operators to sort them by */ Oid *collations; /* OIDs of collations */ bool *nullsFirst; /* NULLS FIRST/LAST directions */ } Sort; /* --------------- * group node - * Used for queries with GROUP BY (but no aggregates) specified. * The input must be presorted according to the grouping columns. * --------------- */ typedef struct Group { Plan plan; int numCols; /* number of grouping columns */ AttrNumber *grpColIdx; /* their indexes in the target list */ Oid *grpOperators; /* equality operators to compare with */ } Group; /* --------------- * aggregate node * * An Agg node implements plain or grouped aggregation. For grouped * aggregation, we can work with presorted input or unsorted input; * the latter strategy uses an internal hashtable. * * Notice the lack of any direct info about the aggregate functions to be * computed. They are found by scanning the node's tlist and quals during * executor startup. (It is possible that there are no aggregate functions; * this could happen if they get optimized away by constant-folding, or if * we are using the Agg node to implement hash-based grouping.) * --------------- */ typedef enum AggStrategy { AGG_PLAIN, /* simple agg across all input rows */ AGG_SORTED, /* grouped agg, input must be sorted */ AGG_HASHED /* grouped agg, use internal hashtable */ } AggStrategy; typedef struct Agg { Plan plan; AggStrategy aggstrategy; int numCols; /* number of grouping columns */ AttrNumber *grpColIdx; /* their indexes in the target list */ Oid *grpOperators; /* equality operators to compare with */ long numGroups; /* estimated number of groups in input */ } Agg; /* ---------------- * window aggregate node * ---------------- */ typedef struct WindowAgg { Plan plan; Index winref; /* ID referenced by window functions */ int partNumCols; /* number of columns in partition clause */ AttrNumber *partColIdx; /* their indexes in the target list */ Oid *partOperators; /* equality operators for partition columns */ int ordNumCols; /* number of columns in ordering clause */ AttrNumber *ordColIdx; /* their indexes in the target list */ Oid *ordOperators; /* equality operators for ordering columns */ int frameOptions; /* frame_clause options, see WindowDef */ Node *startOffset; /* expression for starting bound, if any */ Node *endOffset; /* expression for ending bound, if any */ } WindowAgg; /* ---------------- * unique node * ---------------- */ typedef struct Unique { Plan plan; int numCols; /* number of columns to check for uniqueness */ AttrNumber *uniqColIdx; /* their indexes in the target list */ Oid *uniqOperators; /* equality operators to compare with */ } Unique; /* ---------------- * hash build node * * If the executor is supposed to try to apply skew join optimization, then * skewTable/skewColumn/skewInherit identify the outer relation's join key * column, from which the relevant MCV statistics can be fetched. Also, its * type information is provided to save a lookup. * ---------------- */ typedef struct Hash { Plan plan; Oid skewTable; /* outer join key's table OID, or InvalidOid */ AttrNumber skewColumn; /* outer join key's column #, or zero */ bool skewInherit; /* is outer join rel an inheritance tree? */ Oid skewColType; /* datatype of the outer key column */ int32 skewColTypmod; /* typmod of the outer key column */ /* all other info is in the parent HashJoin node */ } Hash; /* ---------------- * setop node * ---------------- */ typedef enum SetOpCmd { SETOPCMD_INTERSECT, SETOPCMD_INTERSECT_ALL, SETOPCMD_EXCEPT, SETOPCMD_EXCEPT_ALL } SetOpCmd; typedef enum SetOpStrategy { SETOP_SORTED, /* input must be sorted */ SETOP_HASHED /* use internal hashtable */ } SetOpStrategy; typedef struct SetOp { Plan plan; SetOpCmd cmd; /* what to do */ SetOpStrategy strategy; /* how to do it */ int numCols; /* number of columns to check for * duplicate-ness */ AttrNumber *dupColIdx; /* their indexes in the target list */ Oid *dupOperators; /* equality operators to compare with */ AttrNumber flagColIdx; /* where is the flag column, if any */ int firstFlag; /* flag value for first input relation */ long numGroups; /* estimated number of groups in input */ } SetOp; /* ---------------- * lock-rows node * * rowMarks identifies the rels to be locked by this node; it should be * a subset of the rowMarks listed in the top-level PlannedStmt. * epqParam is a Param that all scan nodes below this one must depend on. * It is used to force re-evaluation of the plan during EvalPlanQual. * ---------------- */ typedef struct LockRows { Plan plan; List *rowMarks; /* a list of PlanRowMark's */ int epqParam; /* ID of Param for EvalPlanQual re-eval */ } LockRows; /* ---------------- * limit node * * Note: as of Postgres 8.2, the offset and count expressions are expected * to yield int8, rather than int4 as before. * ---------------- */ typedef struct Limit { Plan plan; Node *limitOffset; /* OFFSET parameter, or NULL if none */ Node *limitCount; /* COUNT parameter, or NULL if none */ } Limit; /* * RowMarkType - * enums for types of row-marking operations * * The first four of these values represent different lock strengths that * we can take on tuples according to SELECT FOR [KEY] UPDATE/SHARE requests. * We only support these on regular tables. For foreign tables, any locking * that might be done for these requests must happen during the initial row * fetch; there is no mechanism for going back to lock a row later (and thus * no need for EvalPlanQual machinery during updates of foreign tables). * This means that the semantics will be a bit different than for a local * table; in particular we are likely to lock more rows than would be locked * locally, since remote rows will be locked even if they then fail * locally-checked restriction or join quals. However, the alternative of * doing a separate remote query to lock each selected row is extremely * unappealing, so let's do it like this for now. * * When doing UPDATE, DELETE, or SELECT FOR UPDATE/SHARE, we have to uniquely * identify all the source rows, not only those from the target relations, so * that we can perform EvalPlanQual rechecking at need. For plain tables we * can just fetch the TID, much as for a target relation; this case is * represented by ROW_MARK_REFERENCE. Otherwise (for example for VALUES or * FUNCTION scans) we have to copy the whole row value. ROW_MARK_COPY is * pretty inefficient, since most of the time we'll never need the data; but * fortunately the case is not performance-critical in practice. Note that * we use ROW_MARK_COPY for non-target foreign tables, even if the FDW has a * concept of rowid and so could theoretically support some form of * ROW_MARK_REFERENCE. Although copying the whole row value is inefficient, * it's probably still faster than doing a second remote fetch, so it doesn't * seem worth the extra complexity to permit ROW_MARK_REFERENCE. */ typedef enum RowMarkType { ROW_MARK_EXCLUSIVE, /* obtain exclusive tuple lock */ ROW_MARK_NOKEYEXCLUSIVE, /* obtain no-key exclusive tuple lock */ ROW_MARK_SHARE, /* obtain shared tuple lock */ ROW_MARK_KEYSHARE, /* obtain keyshare tuple lock */ ROW_MARK_REFERENCE, /* just fetch the TID */ ROW_MARK_COPY /* physically copy the row value */ } RowMarkType; #define RowMarkRequiresRowShareLock(marktype) ((marktype) <= ROW_MARK_KEYSHARE) /* * PlanRowMark - * plan-time representation of FOR [KEY] UPDATE/SHARE clauses * * When doing UPDATE, DELETE, or SELECT FOR UPDATE/SHARE, we create a separate * PlanRowMark node for each non-target relation in the query. Relations that * are not specified as FOR UPDATE/SHARE are marked ROW_MARK_REFERENCE (if * regular tables) or ROW_MARK_COPY (if not). * * Initially all PlanRowMarks have rti == prti and isParent == false. * When the planner discovers that a relation is the root of an inheritance * tree, it sets isParent true, and adds an additional PlanRowMark to the * list for each child relation (including the target rel itself in its role * as a child). The child entries have rti == child rel's RT index and * prti == parent's RT index, and can therefore be recognized as children by * the fact that prti != rti. * * The planner also adds resjunk output columns to the plan that carry * information sufficient to identify the locked or fetched rows. For * regular tables (markType != ROW_MARK_COPY), these columns are named * tableoid%u OID of table * ctid%u TID of row * The tableoid column is only present for an inheritance hierarchy. * When markType == ROW_MARK_COPY, there is instead a single column named * wholerow%u whole-row value of relation * In all three cases, %u represents the rowmark ID number (rowmarkId). * This number is unique within a plan tree, except that child relation * entries copy their parent's rowmarkId. (Assigning unique numbers * means we needn't renumber rowmarkIds when flattening subqueries, which * would require finding and renaming the resjunk columns as well.) * Note this means that all tables in an inheritance hierarchy share the * same resjunk column names. However, in an inherited UPDATE/DELETE the * columns could have different physical column numbers in each subplan. */ typedef struct PlanRowMark { NodeTag type; Index rti; /* range table index of markable relation */ Index prti; /* range table index of parent relation */ Index rowmarkId; /* unique identifier for resjunk columns */ RowMarkType markType; /* see enum above */ bool noWait; /* NOWAIT option */ bool isParent; /* true if this is a "dummy" parent entry */ } PlanRowMark; /* * Plan invalidation info * * We track the objects on which a PlannedStmt depends in two ways: * relations are recorded as a simple list of OIDs, and everything else * is represented as a list of PlanInvalItems. A PlanInvalItem is designed * to be used with the syscache invalidation mechanism, so it identifies a * system catalog entry by cache ID and hash value. */ typedef struct PlanInvalItem { NodeTag type; int cacheId; /* a syscache ID, see utils/syscache.h */ uint32 hashValue; /* hash value of object's cache lookup key */ } PlanInvalItem; #endif /* PLANNODES_H */