D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
opt
/
td-agent
/
embedded
/
include
/
postgresql
/
server
/
storage
/
Filename :
s_lock.h
back
Copy
/*------------------------------------------------------------------------- * * s_lock.h * Hardware-dependent implementation of spinlocks. * * NOTE: none of the macros in this file are intended to be called directly. * Call them through the hardware-independent macros in spin.h. * * The following hardware-dependent macros must be provided for each * supported platform: * * void S_INIT_LOCK(slock_t *lock) * Initialize a spinlock (to the unlocked state). * * int S_LOCK(slock_t *lock) * Acquire a spinlock, waiting if necessary. * Time out and abort() if unable to acquire the lock in a * "reasonable" amount of time --- typically ~ 1 minute. * Should return number of "delays"; see s_lock.c * * void S_UNLOCK(slock_t *lock) * Unlock a previously acquired lock. * * bool S_LOCK_FREE(slock_t *lock) * Tests if the lock is free. Returns TRUE if free, FALSE if locked. * This does *not* change the state of the lock. * * void SPIN_DELAY(void) * Delay operation to occur inside spinlock wait loop. * * Note to implementors: there are default implementations for all these * macros at the bottom of the file. Check if your platform can use * these or needs to override them. * * Usually, S_LOCK() is implemented in terms of even lower-level macros * TAS() and TAS_SPIN(): * * int TAS(slock_t *lock) * Atomic test-and-set instruction. Attempt to acquire the lock, * but do *not* wait. Returns 0 if successful, nonzero if unable * to acquire the lock. * * int TAS_SPIN(slock_t *lock) * Like TAS(), but this version is used when waiting for a lock * previously found to be contended. By default, this is the * same as TAS(), but on some architectures it's better to poll a * contended lock using an unlocked instruction and retry the * atomic test-and-set only when it appears free. * * TAS() and TAS_SPIN() are NOT part of the API, and should never be called * directly. * * CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report * failure to acquire a lock even when the lock is not locked. For example, * on Alpha TAS() will "fail" if interrupted. Therefore a retry loop must * always be used, even if you are certain the lock is free. * * Another caution for users of these macros is that it is the caller's * responsibility to ensure that the compiler doesn't re-order accesses * to shared memory to precede the actual lock acquisition, or follow the * lock release. Typically we handle this by using volatile-qualified * pointers to refer to both the spinlock itself and the shared data * structure being accessed within the spinlocked critical section. * That fixes it because compilers are not allowed to re-order accesses * to volatile objects relative to other such accesses. * * On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and * S_UNLOCK() macros must further include hardware-level memory fence * instructions to prevent similar re-ordering at the hardware level. * TAS() and TAS_SPIN() must guarantee that loads and stores issued after * the macro are not executed until the lock has been obtained. Conversely, * S_UNLOCK() must guarantee that loads and stores issued before the macro * have been executed before the lock is released. * * On most supported platforms, TAS() uses a tas() function written * in assembly language to execute a hardware atomic-test-and-set * instruction. Equivalent OS-supplied mutex routines could be used too. * * If no system-specific TAS() is available (ie, HAVE_SPINLOCKS is not * defined), then we fall back on an emulation that uses SysV semaphores * (see spin.c). This emulation will be MUCH MUCH slower than a proper TAS() * implementation, because of the cost of a kernel call per lock or unlock. * An old report is that Postgres spends around 40% of its time in semop(2) * when using the SysV semaphore code. * * * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * src/include/storage/s_lock.h * *------------------------------------------------------------------------- */ #ifndef S_LOCK_H #define S_LOCK_H #include "storage/pg_sema.h" #ifdef HAVE_SPINLOCKS /* skip spinlocks if requested */ #if defined(__GNUC__) || defined(__INTEL_COMPILER) /************************************************************************* * All the gcc inlines * Gcc consistently defines the CPU as __cpu__. * Other compilers use __cpu or __cpu__ so we test for both in those cases. */ /*---------- * Standard gcc asm format (assuming "volatile slock_t *lock"): __asm__ __volatile__( " instruction \n" " instruction \n" " instruction \n" : "=r"(_res), "+m"(*lock) // return register, in/out lock value : "r"(lock) // lock pointer, in input register : "memory", "cc"); // show clobbered registers here * The output-operands list (after first colon) should always include * "+m"(*lock), whether or not the asm code actually refers to this * operand directly. This ensures that gcc believes the value in the * lock variable is used and set by the asm code. Also, the clobbers * list (after third colon) should always include "memory"; this prevents * gcc from thinking it can cache the values of shared-memory fields * across the asm code. Add "cc" if your asm code changes the condition * code register, and also list any temp registers the code uses. *---------- */ #ifdef __i386__ /* 32-bit i386 */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register slock_t _res = 1; /* * Use a non-locking test before asserting the bus lock. Note that the * extra test appears to be a small loss on some x86 platforms and a small * win on others; it's by no means clear that we should keep it. */ __asm__ __volatile__( " cmpb $0,%1 \n" " jne 1f \n" " lock \n" " xchgb %0,%1 \n" "1: \n" : "+q"(_res), "+m"(*lock) : : "memory", "cc"); return (int) _res; } #define SPIN_DELAY() spin_delay() static __inline__ void spin_delay(void) { /* * This sequence is equivalent to the PAUSE instruction ("rep" is * ignored by old IA32 processors if the following instruction is * not a string operation); the IA-32 Architecture Software * Developer's Manual, Vol. 3, Section 7.7.2 describes why using * PAUSE in the inner loop of a spin lock is necessary for good * performance: * * The PAUSE instruction improves the performance of IA-32 * processors supporting Hyper-Threading Technology when * executing spin-wait loops and other routines where one * thread is accessing a shared lock or semaphore in a tight * polling loop. When executing a spin-wait loop, the * processor can suffer a severe performance penalty when * exiting the loop because it detects a possible memory order * violation and flushes the core processor's pipeline. The * PAUSE instruction provides a hint to the processor that the * code sequence is a spin-wait loop. The processor uses this * hint to avoid the memory order violation and prevent the * pipeline flush. In addition, the PAUSE instruction * de-pipelines the spin-wait loop to prevent it from * consuming execution resources excessively. */ __asm__ __volatile__( " rep; nop \n"); } #endif /* __i386__ */ #ifdef __x86_64__ /* AMD Opteron, Intel EM64T */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register slock_t _res = 1; /* * On Opteron, using a non-locking test before the locking instruction * is a huge loss. On EM64T, it appears to be a wash or small loss, * so we needn't bother to try to distinguish the sub-architectures. */ __asm__ __volatile__( " lock \n" " xchgb %0,%1 \n" : "+q"(_res), "+m"(*lock) : : "memory", "cc"); return (int) _res; } #define SPIN_DELAY() spin_delay() static __inline__ void spin_delay(void) { /* * Adding a PAUSE in the spin delay loop is demonstrably a no-op on * Opteron, but it may be of some use on EM64T, so we keep it. */ __asm__ __volatile__( " rep; nop \n"); } #endif /* __x86_64__ */ #if defined(__ia64__) || defined(__ia64) /* * Intel Itanium, gcc or Intel's compiler. * * Itanium has weak memory ordering, but we rely on the compiler to enforce * strict ordering of accesses to volatile data. In particular, while the * xchg instruction implicitly acts as a memory barrier with 'acquire' * semantics, we do not have an explicit memory fence instruction in the * S_UNLOCK macro. We use a regular assignment to clear the spinlock, and * trust that the compiler marks the generated store instruction with the * ".rel" opcode. * * Testing shows that assumption to hold on gcc, although I could not find * any explicit statement on that in the gcc manual. In Intel's compiler, * the -m[no-]serialize-volatile option controls that, and testing shows that * it is enabled by default. */ #define HAS_TEST_AND_SET typedef unsigned int slock_t; #define TAS(lock) tas(lock) /* On IA64, it's a win to use a non-locking test before the xchg proper */ #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) #ifndef __INTEL_COMPILER static __inline__ int tas(volatile slock_t *lock) { long int ret; __asm__ __volatile__( " xchg4 %0=%1,%2 \n" : "=r"(ret), "+m"(*lock) : "r"(1) : "memory"); return (int) ret; } #else /* __INTEL_COMPILER */ static __inline__ int tas(volatile slock_t *lock) { int ret; ret = _InterlockedExchange(lock,1); /* this is a xchg asm macro */ return ret; } #endif /* __INTEL_COMPILER */ #endif /* __ia64__ || __ia64 */ /* * On ARM, we use __sync_lock_test_and_set(int *, int) if available, and if * not fall back on the SWPB instruction. SWPB does not work on ARMv6 or * later, so the compiler builtin is preferred if available. Note also that * the int-width variant of the builtin works on more chips than other widths. */ #if defined(__arm__) || defined(__arm) #define HAS_TEST_AND_SET #define TAS(lock) tas(lock) #ifdef HAVE_GCC_INT_ATOMICS typedef int slock_t; static __inline__ int tas(volatile slock_t *lock) { return __sync_lock_test_and_set(lock, 1); } #define S_UNLOCK(lock) __sync_lock_release(lock) #else /* !HAVE_GCC_INT_ATOMICS */ typedef unsigned char slock_t; static __inline__ int tas(volatile slock_t *lock) { register slock_t _res = 1; __asm__ __volatile__( " swpb %0, %0, [%2] \n" : "+r"(_res), "+m"(*lock) : "r"(lock) : "memory"); return (int) _res; } #endif /* HAVE_GCC_INT_ATOMICS */ #endif /* __arm__ */ /* * On ARM64, we use __sync_lock_test_and_set(int *, int) if available. */ #if defined(__aarch64__) || defined(__aarch64) #ifdef HAVE_GCC_INT_ATOMICS #define HAS_TEST_AND_SET #define TAS(lock) tas(lock) typedef int slock_t; static __inline__ int tas(volatile slock_t *lock) { return __sync_lock_test_and_set(lock, 1); } #define S_UNLOCK(lock) __sync_lock_release(lock) #endif /* HAVE_GCC_INT_ATOMICS */ #endif /* __aarch64__ */ /* S/390 and S/390x Linux (32- and 64-bit zSeries) */ #if defined(__s390__) || defined(__s390x__) #define HAS_TEST_AND_SET typedef unsigned int slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { int _res = 0; __asm__ __volatile__( " cs %0,%3,0(%2) \n" : "+d"(_res), "+m"(*lock) : "a"(lock), "d"(1) : "memory", "cc"); return _res; } #endif /* __s390__ || __s390x__ */ #if defined(__sparc__) /* Sparc */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register slock_t _res; /* * See comment in /pg/backend/port/tas/solaris_sparc.s for why this * uses "ldstub", and that file uses "cas". gcc currently generates * sparcv7-targeted binaries, so "cas" use isn't possible. */ __asm__ __volatile__( " ldstub [%2], %0 \n" : "=r"(_res), "+m"(*lock) : "r"(lock) : "memory"); return (int) _res; } #endif /* __sparc__ */ /* PowerPC */ #if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__) #define HAS_TEST_AND_SET typedef unsigned int slock_t; #define TAS(lock) tas(lock) /* On PPC, it's a win to use a non-locking test before the lwarx */ #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) /* * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002, * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop. * On newer machines, we can use lwsync instead for better performance. */ static __inline__ int tas(volatile slock_t *lock) { slock_t _t; int _res; __asm__ __volatile__( #ifdef USE_PPC_LWARX_MUTEX_HINT " lwarx %0,0,%3,1 \n" #else " lwarx %0,0,%3 \n" #endif " cmpwi %0,0 \n" " bne 1f \n" " addi %0,%0,1 \n" " stwcx. %0,0,%3 \n" " beq 2f \n" "1: li %1,1 \n" " b 3f \n" "2: \n" #ifdef USE_PPC_LWSYNC " lwsync \n" #else " isync \n" #endif " li %1,0 \n" "3: \n" : "=&r"(_t), "=r"(_res), "+m"(*lock) : "r"(lock) : "memory", "cc"); return _res; } /* * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction. * On newer machines, we can use lwsync instead for better performance. */ #ifdef USE_PPC_LWSYNC #define S_UNLOCK(lock) \ do \ { \ __asm__ __volatile__ (" lwsync \n"); \ *((volatile slock_t *) (lock)) = 0; \ } while (0) #else #define S_UNLOCK(lock) \ do \ { \ __asm__ __volatile__ (" sync \n"); \ *((volatile slock_t *) (lock)) = 0; \ } while (0) #endif /* USE_PPC_LWSYNC */ #endif /* powerpc */ /* Linux Motorola 68k */ #if (defined(__mc68000__) || defined(__m68k__)) && defined(__linux__) #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register int rv; __asm__ __volatile__( " clrl %0 \n" " tas %1 \n" " sne %0 \n" : "=d"(rv), "+m"(*lock) : : "memory", "cc"); return rv; } #endif /* (__mc68000__ || __m68k__) && __linux__ */ /* * VAXen -- even multiprocessor ones * (thanks to Tom Ivar Helbekkmo) */ #if defined(__vax__) #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register int _res; __asm__ __volatile__( " movl $1, %0 \n" " bbssi $0, (%2), 1f \n" " clrl %0 \n" "1: \n" : "=&r"(_res), "+m"(*lock) : "r"(lock) : "memory"); return _res; } #endif /* __vax__ */ #if defined(__ns32k__) /* National Semiconductor 32K */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register int _res; __asm__ __volatile__( " sbitb 0, %1 \n" " sfsd %0 \n" : "=r"(_res), "+m"(*lock) : : "memory"); return _res; } #endif /* __ns32k__ */ #if defined(__alpha) || defined(__alpha__) /* Alpha */ /* * Correct multi-processor locking methods are explained in section 5.5.3 * of the Alpha AXP Architecture Handbook, which at this writing can be * found at ftp://ftp.netbsd.org/pub/NetBSD/misc/dec-docs/index.html. * For gcc we implement the handbook's code directly with inline assembler. */ #define HAS_TEST_AND_SET typedef unsigned long slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register slock_t _res; __asm__ __volatile__( " ldq $0, %1 \n" " bne $0, 2f \n" " ldq_l %0, %1 \n" " bne %0, 2f \n" " mov 1, $0 \n" " stq_c $0, %1 \n" " beq $0, 2f \n" " mb \n" " br 3f \n" "2: mov 1, %0 \n" "3: \n" : "=&r"(_res), "+m"(*lock) : : "memory", "0"); return (int) _res; } #define S_UNLOCK(lock) \ do \ {\ __asm__ __volatile__ (" mb \n"); \ *((volatile slock_t *) (lock)) = 0; \ } while (0) #endif /* __alpha || __alpha__ */ #if defined(__mips__) && !defined(__sgi) /* non-SGI MIPS */ /* Note: on SGI we use the OS' mutex ABI, see below */ /* Note: R10000 processors require a separate SYNC */ #define HAS_TEST_AND_SET typedef unsigned int slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register volatile slock_t *_l = lock; register int _res; register int _tmp; __asm__ __volatile__( " .set push \n" " .set mips2 \n" " .set noreorder \n" " .set nomacro \n" " ll %0, %2 \n" " or %1, %0, 1 \n" " sc %1, %2 \n" " xori %1, 1 \n" " or %0, %0, %1 \n" " sync \n" " .set pop " : "=&r" (_res), "=&r" (_tmp), "+R" (*_l) : : "memory"); return _res; } /* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */ #define S_UNLOCK(lock) \ do \ { \ __asm__ __volatile__( \ " .set push \n" \ " .set mips2 \n" \ " .set noreorder \n" \ " .set nomacro \n" \ " sync \n" \ " .set pop "); \ *((volatile slock_t *) (lock)) = 0; \ } while (0) #endif /* __mips__ && !__sgi */ #if defined(__m32r__) && defined(HAVE_SYS_TAS_H) /* Renesas' M32R */ #define HAS_TEST_AND_SET #include <sys/tas.h> typedef int slock_t; #define TAS(lock) tas(lock) #endif /* __m32r__ */ #if defined(__sh__) /* Renesas' SuperH */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register int _res; /* * This asm is coded as if %0 could be any register, but actually SuperH * restricts the target of xor-immediate to be R0. That's handled by * the "z" constraint on _res. */ __asm__ __volatile__( " tas.b @%2 \n" " movt %0 \n" " xor #1,%0 \n" : "=z"(_res), "+m"(*lock) : "r"(lock) : "memory", "t"); return _res; } #endif /* __sh__ */ /* These live in s_lock.c, but only for gcc */ #if defined(__m68k__) && !defined(__linux__) /* non-Linux Motorola 68k */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #endif #endif /* defined(__GNUC__) || defined(__INTEL_COMPILER) */ /* * --------------------------------------------------------------------- * Platforms that use non-gcc inline assembly: * --------------------------------------------------------------------- */ #if !defined(HAS_TEST_AND_SET) /* We didn't trigger above, let's try here */ #if defined(USE_UNIVEL_CC) /* Unixware compiler */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) asm int tas(volatile slock_t *s_lock) { /* UNIVEL wants %mem in column 1, so we don't pg_indent this file */ %mem s_lock pushl %ebx movl s_lock, %ebx movl $255, %eax lock xchgb %al, (%ebx) popl %ebx } #endif /* defined(USE_UNIVEL_CC) */ #if defined(__alpha) || defined(__alpha__) /* Tru64 Unix Alpha compiler */ /* * The Tru64 compiler doesn't support gcc-style inline asm, but it does * have some builtin functions that accomplish much the same results. * For simplicity, slock_t is defined as long (ie, quadword) on Alpha * regardless of the compiler in use. LOCK_LONG and UNLOCK_LONG only * operate on an int (ie, longword), but that's OK as long as we define * S_INIT_LOCK to zero out the whole quadword. */ #define HAS_TEST_AND_SET typedef unsigned long slock_t; #include <alpha/builtins.h> #define S_INIT_LOCK(lock) (*(lock) = 0) #define TAS(lock) (__LOCK_LONG_RETRY((lock), 1) == 0) #define S_UNLOCK(lock) __UNLOCK_LONG(lock) #endif /* __alpha || __alpha__ */ #if defined(__hppa) || defined(__hppa__) /* HP PA-RISC, GCC and HP compilers */ /* * HP's PA-RISC * * See src/backend/port/hpux/tas.c.template for details about LDCWX. Because * LDCWX requires a 16-byte-aligned address, we declare slock_t as a 16-byte * struct. The active word in the struct is whichever has the aligned address; * the other three words just sit at -1. * * When using gcc, we can inline the required assembly code. */ #define HAS_TEST_AND_SET typedef struct { int sema[4]; } slock_t; #define TAS_ACTIVE_WORD(lock) ((volatile int *) (((uintptr_t) (lock) + 15) & ~15)) #if defined(__GNUC__) static __inline__ int tas(volatile slock_t *lock) { volatile int *lockword = TAS_ACTIVE_WORD(lock); register int lockval; __asm__ __volatile__( " ldcwx 0(0,%2),%0 \n" : "=r"(lockval), "+m"(*lockword) : "r"(lockword) : "memory"); return (lockval == 0); } #endif /* __GNUC__ */ #define S_UNLOCK(lock) (*TAS_ACTIVE_WORD(lock) = -1) #define S_INIT_LOCK(lock) \ do { \ volatile slock_t *lock_ = (lock); \ lock_->sema[0] = -1; \ lock_->sema[1] = -1; \ lock_->sema[2] = -1; \ lock_->sema[3] = -1; \ } while (0) #define S_LOCK_FREE(lock) (*TAS_ACTIVE_WORD(lock) != 0) #endif /* __hppa || __hppa__ */ #if defined(__hpux) && defined(__ia64) && !defined(__GNUC__) /* * HP-UX on Itanium, non-gcc compiler * * We assume that the compiler enforces strict ordering of loads/stores on * volatile data (see comments on the gcc-version earlier in this file). * Note that this assumption does *not* hold if you use the * +Ovolatile=__unordered option on the HP-UX compiler, so don't do that. * * See also Implementing Spinlocks on the Intel Itanium Architecture and * PA-RISC, by Tor Ekqvist and David Graves, for more information. As of * this writing, version 1.0 of the manual is available at: * http://h21007.www2.hp.com/portal/download/files/unprot/itanium/spinlocks.pdf */ #define HAS_TEST_AND_SET typedef unsigned int slock_t; #include <ia64/sys/inline.h> #define TAS(lock) _Asm_xchg(_SZ_W, lock, 1, _LDHINT_NONE) /* On IA64, it's a win to use a non-locking test before the xchg proper */ #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) #endif /* HPUX on IA64, non gcc */ #if defined(__sgi) /* SGI compiler */ /* * SGI IRIX 5 * slock_t is defined as a unsigned long. We use the standard SGI * mutex API. * * The following comment is left for historical reasons, but is probably * not a good idea since the mutex ABI is supported. * * This stuff may be supplemented in the future with Masato Kataoka's MIPS-II * assembly from his NECEWS SVR4 port, but we probably ought to retain this * for the R3000 chips out there. */ #define HAS_TEST_AND_SET typedef unsigned long slock_t; #include "mutex.h" #define TAS(lock) (test_and_set(lock,1)) #define S_UNLOCK(lock) (test_then_and(lock,0)) #define S_INIT_LOCK(lock) (test_then_and(lock,0)) #define S_LOCK_FREE(lock) (test_then_add(lock,0) == 0) #endif /* __sgi */ #if defined(sinix) /* Sinix */ /* * SINIX / Reliant UNIX * slock_t is defined as a struct abilock_t, which has a single unsigned long * member. (Basically same as SGI) */ #define HAS_TEST_AND_SET #include "abi_mutex.h" typedef abilock_t slock_t; #define TAS(lock) (!acquire_lock(lock)) #define S_UNLOCK(lock) release_lock(lock) #define S_INIT_LOCK(lock) init_lock(lock) #define S_LOCK_FREE(lock) (stat_lock(lock) == UNLOCKED) #endif /* sinix */ #if defined(_AIX) /* AIX */ /* * AIX (POWER) */ #define HAS_TEST_AND_SET #include <sys/atomic_op.h> typedef int slock_t; #define TAS(lock) _check_lock((slock_t *) (lock), 0, 1) #define S_UNLOCK(lock) _clear_lock((slock_t *) (lock), 0) #endif /* _AIX */ /* These are in s_lock.c */ #if defined(sun3) /* Sun3 */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #endif #if defined(__SUNPRO_C) && (defined(__i386) || defined(__x86_64__) || defined(__sparc__) || defined(__sparc)) #define HAS_TEST_AND_SET #if defined(__i386) || defined(__x86_64__) || defined(__sparcv9) || defined(__sparcv8plus) typedef unsigned int slock_t; #else typedef unsigned char slock_t; #endif extern slock_t pg_atomic_cas(volatile slock_t *lock, slock_t with, slock_t cmp); #define TAS(a) (pg_atomic_cas((a), 1, 0) != 0) #endif #ifdef WIN32_ONLY_COMPILER typedef LONG slock_t; #define HAS_TEST_AND_SET #define TAS(lock) (InterlockedCompareExchange(lock, 1, 0)) #define SPIN_DELAY() spin_delay() /* If using Visual C++ on Win64, inline assembly is unavailable. * Use a _mm_pause instrinsic instead of rep nop. */ #if defined(_WIN64) static __forceinline void spin_delay(void) { _mm_pause(); } #else static __forceinline void spin_delay(void) { /* See comment for gcc code. Same code, MASM syntax */ __asm rep nop; } #endif #endif #endif /* !defined(HAS_TEST_AND_SET) */ /* Blow up if we didn't have any way to do spinlocks */ #ifndef HAS_TEST_AND_SET #error PostgreSQL does not have native spinlock support on this platform. To continue the compilation, rerun configure using --disable-spinlocks. However, performance will be poor. Please report this to pgsql-bugs@postgresql.org. #endif #else /* !HAVE_SPINLOCKS */ /* * Fake spinlock implementation using semaphores --- slow and prone * to fall foul of kernel limits on number of semaphores, so don't use this * unless you must! The subroutines appear in spin.c. */ typedef PGSemaphoreData slock_t; extern bool s_lock_free_sema(volatile slock_t *lock); extern void s_unlock_sema(volatile slock_t *lock); extern void s_init_lock_sema(volatile slock_t *lock); extern int tas_sema(volatile slock_t *lock); #define S_LOCK_FREE(lock) s_lock_free_sema(lock) #define S_UNLOCK(lock) s_unlock_sema(lock) #define S_INIT_LOCK(lock) s_init_lock_sema(lock) #define TAS(lock) tas_sema(lock) #endif /* HAVE_SPINLOCKS */ /* * Default Definitions - override these above as needed. */ #if !defined(S_LOCK) #define S_LOCK(lock) \ (TAS(lock) ? s_lock((lock), __FILE__, __LINE__) : 0) #endif /* S_LOCK */ #if !defined(S_LOCK_FREE) #define S_LOCK_FREE(lock) (*(lock) == 0) #endif /* S_LOCK_FREE */ #if !defined(S_UNLOCK) #define S_UNLOCK(lock) (*((volatile slock_t *) (lock)) = 0) #endif /* S_UNLOCK */ #if !defined(S_INIT_LOCK) #define S_INIT_LOCK(lock) S_UNLOCK(lock) #endif /* S_INIT_LOCK */ #if !defined(SPIN_DELAY) #define SPIN_DELAY() ((void) 0) #endif /* SPIN_DELAY */ #if !defined(TAS) extern int tas(volatile slock_t *lock); /* in port/.../tas.s, or * s_lock.c */ #define TAS(lock) tas(lock) #endif /* TAS */ #if !defined(TAS_SPIN) #define TAS_SPIN(lock) TAS(lock) #endif /* TAS_SPIN */ /* * Platform-independent out-of-line support routines */ extern int s_lock(volatile slock_t *lock, const char *file, int line); /* Support for dynamic adjustment of spins_per_delay */ #define DEFAULT_SPINS_PER_DELAY 100 extern void set_spins_per_delay(int shared_spins_per_delay); extern int update_spins_per_delay(int shared_spins_per_delay); #endif /* S_LOCK_H */